提交 21fedfe5 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix loss

上级 024ddbd5
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss
class DistanceLoss(nn.Layer):
"""
DistanceLoss:
mode: loss mode
"""
def __init__(self, mode="l2", **kargs):
super().__init__()
assert mode in ["l1", "l2", "smooth_l1"]
if mode == "l1":
self.loss_func = nn.L1Loss(**kargs)
elif mode == "l2":
self.loss_func = nn.MSELoss(**kargs)
elif mode == "smooth_l1":
self.loss_func = nn.SmoothL1Loss(**kargs)
self.mode = mode
def forward(self, x, y):
loss = self.loss_func(x, y)
return {"loss_{}".format(self.mode): loss}
\ No newline at end of file
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
class DistillationCELoss(CELoss):
"""
DistillationCELoss
"""
def __init__(self,
model_name_pairs=[],
epsilon=None,
key=None,
name="loss_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
return loss_dict
class DistillationGTCELoss(CELoss):
"""
DistillationGTCELoss
"""
def __init__(self,
model_names=[],
epsilon=None,
key=None,
name="loss_gt_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_names, list)
self.key = key
self.model_names = model_names
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, name in enumerate(self.model_names):
out = predicts[name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
for key in loss:
loss_dict["{}_{}".format(key, name)] = loss[key]
return loss_dict
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self,
model_name_pairs=[],
act=None,
key=None,
name="loss_dml"):
super().__init__(act=act)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + "_l2"
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
return loss_dict
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册