inception_v3.py 17.3 KB
Newer Older
F
Felix 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Felix 已提交
15
from __future__ import absolute_import, division, print_function
D
dongshuilong 已提交
16
import math
F
Felix 已提交
17 18 19 20 21 22 23 24
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
F
Felix 已提交
25
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
F
Felix 已提交
26

F
Felix 已提交
27
MODEL_URLS = {
D
dongshuilong 已提交
28 29
    "InceptionV3":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams"
F
Felix 已提交
30 31
}

32 33 34 35 36 37 38 39
MODEL_STAGES_PATTERN = {
    "InceptionV3": [
        "inception_block_list[2]", "inception_block_list[3]",
        "inception_block_list[7]", "inception_block_list[8]",
        "inception_block_list[10]"
    ]
}

F
Felix 已提交
40 41 42 43 44 45
__all__ = MODEL_URLS.keys()
'''
InceptionV3 config: dict.
    key: inception blocks of InceptionV3.
    values: conv num in different blocks.
'''
F
Felix 已提交
46
NET_CONFIG = {
D
dongshuilong 已提交
47 48 49 50 51
    "inception_a": [[192, 256, 288], [32, 64, 64]],
    "inception_b": [288],
    "inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
    "inception_d": [768],
    "inception_e": [1280, 2048]
F
Felix 已提交
52 53
}

D
dongshuilong 已提交
54

F
Felix 已提交
55 56 57 58 59 60 61 62
class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
F
Felix 已提交
63
                 act="relu"):
D
dongshuilong 已提交
64
        super().__init__()
F
Felix 已提交
65
        self.act = act
F
Felix 已提交
66 67 68 69 70 71 72 73
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
D
dongshuilong 已提交
74
        self.bn = BatchNorm(num_filters)
F
Felix 已提交
75
        self.relu = nn.ReLU()
F
Felix 已提交
76

F
Felix 已提交
77 78
    def forward(self, x):
        x = self.conv(x)
D
dongshuilong 已提交
79
        x = self.bn(x)
F
Felix 已提交
80 81 82
        if self.act:
            x = self.relu(x)
        return x
F
Felix 已提交
83

D
dongshuilong 已提交
84

F
Felix 已提交
85 86
class InceptionStem(TheseusLayer):
    def __init__(self):
D
dongshuilong 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        super().__init__()
        self.conv_1a_3x3 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act="relu")
        self.conv_2a_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act="relu")
        self.conv_2b_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            padding=1,
            act="relu")

        self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
        self.conv_3b_1x1 = ConvBNLayer(
            num_channels=64, num_filters=80, filter_size=1, act="relu")
        self.conv_4a_3x3 = ConvBNLayer(
            num_channels=80, num_filters=192, filter_size=3, act="relu")

F
Felix 已提交
113
    def forward(self, x):
F
Felix 已提交
114 115 116
        x = self.conv_1a_3x3(x)
        x = self.conv_2a_3x3(x)
        x = self.conv_2b_3x3(x)
D
dongshuilong 已提交
117
        x = self.max_pool(x)
F
Felix 已提交
118 119
        x = self.conv_3b_1x1(x)
        x = self.conv_4a_3x3(x)
D
dongshuilong 已提交
120
        x = self.max_pool(x)
F
Felix 已提交
121
        return x
F
Felix 已提交
122

D
dongshuilong 已提交
123

F
Felix 已提交
124
class InceptionA(TheseusLayer):
F
Felix 已提交
125
    def __init__(self, num_channels, pool_features):
D
dongshuilong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch5x5_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=48,
            filter_size=1,
            act="relu")
        self.branch5x5_2 = ConvBNLayer(
            num_channels=48,
            num_filters=64,
            filter_size=5,
            padding=2,
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=pool_features,
            filter_size=1,
            act="relu")
F
Felix 已提交
168 169 170 171 172 173 174 175 176 177 178 179

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)
D
dongshuilong 已提交
180 181
        x = paddle.concat(
            [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
182
        return x
F
Felix 已提交
183

D
dongshuilong 已提交
184

F
Felix 已提交
185
class InceptionB(TheseusLayer):
F
Felix 已提交
186
    def __init__(self, num_channels):
D
dongshuilong 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        super().__init__()
        self.branch3x3 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
211
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
D
dongshuilong 已提交
212

F
Felix 已提交
213 214 215 216 217 218 219 220 221
    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

F
Felix 已提交
222
        x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
223

F
Felix 已提交
224
        return x
F
Felix 已提交
225

D
dongshuilong 已提交
226

F
Felix 已提交
227
class InceptionC(TheseusLayer):
F
Felix 已提交
228
    def __init__(self, num_channels, channels_7x7):
D
dongshuilong 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

        self.branch7x7_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            stride=1,
            act="relu")
        self.branch7x7_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            stride=1,
            padding=(0, 3),
            act="relu")
        self.branch7x7_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(7, 1),
            stride=1,
            padding=(3, 0),
            act="relu")

        self.branch7x7dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            act="relu")
        self.branch7x7dbl_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7dbl_4 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_5 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")

        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
311 312 313
        x = paddle.concat(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)

F
Felix 已提交
314
        return x
D
dongshuilong 已提交
315 316


F
Felix 已提交
317
class InceptionD(TheseusLayer):
F
Felix 已提交
318
    def __init__(self, num_channels):
D
dongshuilong 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        super().__init__()
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch3x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=320,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch7x7x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch7x7x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7x3_3 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7x3_4 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
354 355 356 357 358 359 360 361 362 363 364 365
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = self.branch_pool(x)
D
dongshuilong 已提交
366

F
Felix 已提交
367 368
        x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
        return x
D
dongshuilong 已提交
369 370


F
Felix 已提交
371
class InceptionE(TheseusLayer):
F
Felix 已提交
372
    def __init__(self, num_channels):
D
dongshuilong 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=320,
            filter_size=1,
            act="relu")
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=1,
            act="relu")
        self.branch3x3_2a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3_2b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=448,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=448,
            num_filters=384,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3dbl_3b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = paddle.concat(branch3x3, axis=1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
449 450 451
        x = paddle.concat(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
        return x
F
Felix 已提交
452 453 454


class Inception_V3(TheseusLayer):
F
Felix 已提交
455 456 457 458 459 460 461 462 463
    """
    Inception_V3
    Args:
        config: dict. config of Inception_V3.
        class_num: int=1000. The number of classes.
        pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
    Returns:
        model: nn.Layer. Specific Inception_V3 model depends on args.
    """
D
dongshuilong 已提交
464

465 466 467 468 469
    def __init__(self,
                 config,
                 stages_pattern,
                 class_num=1000,
                 return_patterns=None,
G
gaotingquan 已提交
470
                 return_stages=None):
D
dongshuilong 已提交
471 472 473 474 475 476 477
        super().__init__()

        self.inception_a_list = config["inception_a"]
        self.inception_c_list = config["inception_c"]
        self.inception_b_list = config["inception_b"]
        self.inception_d_list = config["inception_d"]
        self.inception_e_list = config["inception_e"]
F
Felix 已提交
478

F
Felix 已提交
479 480
        self.inception_stem = InceptionStem()

F
Felix 已提交
481
        self.inception_block_list = nn.LayerList()
F
Felix 已提交
482
        for i in range(len(self.inception_a_list[0])):
D
dongshuilong 已提交
483
            inception_a = InceptionA(self.inception_a_list[0][i],
F
Felix 已提交
484
                                     self.inception_a_list[1][i])
F
Felix 已提交
485 486 487
            self.inception_block_list.append(inception_a)

        for i in range(len(self.inception_b_list)):
F
Felix 已提交
488
            inception_b = InceptionB(self.inception_b_list[i])
F
Felix 已提交
489 490 491
            self.inception_block_list.append(inception_b)

        for i in range(len(self.inception_c_list[0])):
D
dongshuilong 已提交
492
            inception_c = InceptionC(self.inception_c_list[0][i],
F
Felix 已提交
493
                                     self.inception_c_list[1][i])
F
Felix 已提交
494 495 496
            self.inception_block_list.append(inception_c)

        for i in range(len(self.inception_d_list)):
F
Felix 已提交
497
            inception_d = InceptionD(self.inception_d_list[i])
F
Felix 已提交
498 499 500
            self.inception_block_list.append(inception_d)

        for i in range(len(self.inception_e_list)):
F
Felix 已提交
501
            inception_e = InceptionE(self.inception_e_list[i])
F
Felix 已提交
502
            self.inception_block_list.append(inception_e)
D
dongshuilong 已提交
503

F
Felix 已提交
504 505
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
F
Felix 已提交
506
        stdv = 1.0 / math.sqrt(2048 * 1.0)
F
Felix 已提交
507
        self.fc = Linear(
F
Felix 已提交
508 509
            2048,
            class_num,
D
dongshuilong 已提交
510
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
F
Felix 已提交
511
            bias_attr=ParamAttr())
512 513 514 515 516

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
F
Felix 已提交
517 518

    def forward(self, x):
F
Felix 已提交
519
        x = self.inception_stem(x)
F
Felix 已提交
520
        for inception_block in self.inception_block_list:
D
dongshuilong 已提交
521
            x = inception_block(x)
F
Felix 已提交
522
        x = self.avg_pool(x)
F
Felix 已提交
523
        x = paddle.reshape(x, shape=[-1, 2048])
F
Felix 已提交
524 525
        x = self.dropout(x)
        x = self.fc(x)
F
Felix 已提交
526
        return x
F
Felix 已提交
527 528


D
dongshuilong 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def InceptionV3(pretrained=False, use_ssld=False, **kwargs):
F
Felix 已提交
543 544 545
    """
    InceptionV3
    Args:
D
dongshuilong 已提交
546 547 548
        pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
                    if str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
F
Felix 已提交
549
    Returns:
G
gaotingquan 已提交
550
        model: nn.Layer. Specific `InceptionV3` model
F
Felix 已提交
551
    """
552 553 554 555
    model = Inception_V3(
        NET_CONFIG,
        stages_pattern=MODEL_STAGES_PATTERN["InceptionV3"],
        **kwargs)
D
dongshuilong 已提交
556
    _load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld)
F
Felix 已提交
557
    return model