inception_v3.py 19.0 KB
Newer Older
F
Felix 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = ["InceptionV3"]


NET_CONFIG = {
    'inception_a':[[192, 256, 288], [32, 64, 64]],
    'inception_b':[288],   
    'inception_c':[[768, 768, 768, 768], [128, 160, 160, 192]],
    'inception_d':[768],   
    'inception_e':[1280,2048]
}


def InceptionV3(**kwargs):
    model = Inception_V3(NET_CONFIG, **kwargs)
    return model


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
F
Felix 已提交
55
                 act="relu"):
F
Felix 已提交
56 57 58 59 60 61 62 63 64 65 66 67
        super(ConvBNLayer, self).__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
        self.batch_norm = BatchNorm(
            num_filters,
F
Felix 已提交
68
            act=act)
F
Felix 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.batch_norm(y)
        return y

class InceptionStem(TheseusLayer):
    def __init__(self):
        super(InceptionStem, self).__init__()
        self.conv_1a_3x3 = ConvBNLayer(num_channels=3,
                                       num_filters=32,
                                       filter_size=3,
                                       stride=2,
F
Felix 已提交
82
                                       act="relu")
F
Felix 已提交
83 84 85 86
        self.conv_2a_3x3 = ConvBNLayer(num_channels=32,
                                       num_filters=32,
                                       filter_size=3,
                                       stride=1,
F
Felix 已提交
87
                                       act="relu")
F
Felix 已提交
88 89 90 91
        self.conv_2b_3x3 = ConvBNLayer(num_channels=32,
                                       num_filters=64,
                                       filter_size=3,
                                       padding=1,
F
Felix 已提交
92
                                       act="relu")
F
Felix 已提交
93 94 95 96 97

        self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0)
        self.conv_3b_1x1 = ConvBNLayer(num_channels=64,
                                       num_filters=80,
                                       filter_size=1,
F
Felix 已提交
98
                                       act="relu")        
F
Felix 已提交
99 100 101
        self.conv_4a_3x3 = ConvBNLayer(num_channels=80,
                                       num_filters=192,
                                       filter_size=3,
F
Felix 已提交
102
                                       act="relu")
F
Felix 已提交
103 104 105 106 107 108 109 110 111 112 113 114
    def forward(self, x):
        y = self.conv_1a_3x3(x)
        y = self.conv_2a_3x3(y)
        y = self.conv_2b_3x3(y)
        y = self.maxpool(y)
        y = self.conv_3b_1x1(y)
        y = self.conv_4a_3x3(y)
        y = self.maxpool(y)
        return y

                         
class InceptionA(TheseusLayer):
F
Felix 已提交
115
    def __init__(self, num_channels, pool_features):
F
Felix 已提交
116 117 118 119
        super(InceptionA, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=64,
                                     filter_size=1,
F
Felix 已提交
120
                                     act="relu") 
F
Felix 已提交
121 122 123
        self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=48, 
                                       filter_size=1, 
F
Felix 已提交
124
                                       act="relu")
F
Felix 已提交
125 126 127 128
        self.branch5x5_2 = ConvBNLayer(num_channels=48, 
                                       num_filters=64, 
                                       filter_size=5, 
                                       padding=2, 
F
Felix 已提交
129
                                       act="relu")
F
Felix 已提交
130 131 132 133

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=64, 
                                       filter_size=1, 
F
Felix 已提交
134
                                       act="relu")
F
Felix 已提交
135 136 137 138
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
                                       num_filters=96, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
139
                                       act="relu")
F
Felix 已提交
140 141 142 143
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
                               num_filters=96, 
                               filter_size=3, 
                               padding=1,
F
Felix 已提交
144
                               act="relu")
F
Felix 已提交
145 146 147 148
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                               num_filters=pool_features, 
                               filter_size=1, 
F
Felix 已提交
149
                               act="relu")
F
Felix 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

        branch_pool = self.branch_pool_conv(branch_pool)
        outputs = paddle.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
        return outputs

    
class InceptionB(TheseusLayer):
F
Felix 已提交
168
    def __init__(self, num_channels):
F
Felix 已提交
169 170 171 172 173
        super(InceptionB, self).__init__()
        self.branch3x3 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=384,
                                     filter_size=3,
                                     stride=2,
F
Felix 已提交
174
                                     act="relu") 
F
Felix 已提交
175 176 177
        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=64, 
                                       filter_size=1, 
F
Felix 已提交
178
                                       act="relu")
F
Felix 已提交
179 180 181 182
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64, 
                                       num_filters=96, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
183
                                       act="relu")
F
Felix 已提交
184 185 186 187
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96, 
                                       num_filters=96, 
                                       filter_size=3,
                                       stride=2,
F
Felix 已提交
188
                                       act="relu")
F
Felix 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
        
    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

        outputs = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)

        return outputs

class InceptionC(TheseusLayer):
F
Felix 已提交
205
    def __init__(self, num_channels, channels_7x7):
F
Felix 已提交
206 207 208 209
        super(InceptionC, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
210
                                       act="relu")
F
Felix 已提交
211 212 213 214
        self.branch7x7_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=channels_7x7, 
                                       filter_size=1, 
                                       stride=1,
F
Felix 已提交
215
                                       act="relu")
F
Felix 已提交
216 217 218 219 220
        self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=channels_7x7, 
                                       filter_size=(1, 7), 
                                       stride=1,
                                       padding=(0, 3),
F
Felix 已提交
221
                                       act="relu")
F
Felix 已提交
222 223 224 225 226
        self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=192, 
                                       filter_size=(7, 1), 
                                       stride=1,
                                       padding=(3, 0),
F
Felix 已提交
227
                                       act="relu")
F
Felix 已提交
228 229 230 231
        
        self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=channels_7x7, 
                                       filter_size=1, 
F
Felix 已提交
232
                                       act="relu")
F
Felix 已提交
233 234 235 236
        self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,  
                                       num_filters=channels_7x7, 
                                       filter_size=(7, 1), 
                                       padding = (3, 0),
F
Felix 已提交
237
                                       act="relu")
F
Felix 已提交
238 239 240 241
        self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7, 
                                       num_filters=channels_7x7, 
                                       filter_size=(1, 7), 
                                       padding = (0, 3),
F
Felix 已提交
242
                                       act="relu")
F
Felix 已提交
243 244 245 246
        self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,  
                                       num_filters=channels_7x7, 
                                       filter_size=(7, 1), 
                                       padding = (3, 0),
F
Felix 已提交
247
                                       act="relu")
F
Felix 已提交
248 249 250 251
        self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7, 
                                       num_filters=192, 
                                       filter_size=(1, 7), 
                                       padding = (0, 3),
F
Felix 已提交
252
                                       act="relu")
F
Felix 已提交
253 254 255 256 257
       
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
258
                                       act="relu")
F
Felix 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

        outputs = paddle.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
        
        return outputs
    
class InceptionD(TheseusLayer):
F
Felix 已提交
281
    def __init__(self, num_channels):
F
Felix 已提交
282 283 284 285
        super(InceptionD, self).__init__()
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
286
                                       act="relu")
F
Felix 已提交
287 288 289 290
        self.branch3x3_2 = ConvBNLayer(num_channels=192, 
                                       num_filters=320, 
                                       filter_size=3, 
                                       stride=2,
F
Felix 已提交
291
                                       act="relu")
F
Felix 已提交
292 293 294
        self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
295
                                       act="relu")
F
Felix 已提交
296 297 298 299
        self.branch7x7x3_2 = ConvBNLayer(num_channels=192,
                                       num_filters=192, 
                                       filter_size=(1, 7), 
                                       padding=(0, 3),
F
Felix 已提交
300
                                       act="relu")
F
Felix 已提交
301 302 303 304
        self.branch7x7x3_3 = ConvBNLayer(num_channels=192, 
                                       num_filters=192, 
                                       filter_size=(7, 1), 
                                       padding=(3, 0),
F
Felix 已提交
305
                                       act="relu")
F
Felix 已提交
306 307 308 309
        self.branch7x7x3_4 = ConvBNLayer(num_channels=192,  
                                       num_filters=192, 
                                       filter_size=3, 
                                       stride=2,
F
Felix 已提交
310
                                       act="relu")
F
Felix 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = self.branch_pool(x)
        
        outputs = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
        return outputs
    
class InceptionE(TheseusLayer):
F
Felix 已提交
328
    def __init__(self, num_channels):
F
Felix 已提交
329 330 331 332
        super(InceptionE, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=320, 
                                       filter_size=1, 
F
Felix 已提交
333
                                       act="relu")
F
Felix 已提交
334 335 336
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=384, 
                                       filter_size=1, 
F
Felix 已提交
337
                                       act="relu")
F
Felix 已提交
338 339 340 341
        self.branch3x3_2a = ConvBNLayer(num_channels=384, 
                                       num_filters=384, 
                                       filter_size=(1, 3), 
                                       padding=(0, 1),
F
Felix 已提交
342
                                       act="relu")
F
Felix 已提交
343 344 345 346
        self.branch3x3_2b = ConvBNLayer(num_channels=384, 
                                       num_filters=384, 
                                       filter_size=(3, 1), 
                                       padding=(1, 0),
F
Felix 已提交
347
                                       act="relu")
F
Felix 已提交
348 349 350 351
        
        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=448, 
                                       filter_size=1, 
F
Felix 已提交
352
                                       act="relu")
F
Felix 已提交
353 354 355 356
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=448, 
                                       num_filters=384, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
357
                                       act="relu")
F
Felix 已提交
358 359 360 361
        self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
                                       num_filters=384, 
                                       filter_size=(1, 3), 
                                       padding=(0, 1),
F
Felix 已提交
362
                                       act="relu")
F
Felix 已提交
363 364 365 366
        self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
                                       num_filters=384, 
                                       filter_size=(3, 1), 
                                       padding=(1, 0),
F
Felix 已提交
367
                                       act="relu")
F
Felix 已提交
368 369 370 371
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
372
                                       act="relu")
F
Felix 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = paddle.concat(branch3x3, axis=1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

        outputs = paddle.concat([branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
        return outputs   


class Inception_V3(TheseusLayer):
    def __init__(self, config, class_num=1000, **kwargs):
        super(Inception_V3, self).__init__()

        self.inception_a_list = config['inception_a']
        self.inception_c_list = config['inception_c']
        self.inception_b_list = config['inception_b']
        self.inception_d_list = config['inception_d']
        self.inception_e_list = config ['inception_e']
        
        self.inception_stem = InceptionStem()

F
Felix 已提交
410
        self.inception_block_list = nn.LayerList()
F
Felix 已提交
411 412
        for i in range(len(self.inception_a_list[0])):
            inception_a = InceptionA(self.inception_a_list[0][i], 
F
Felix 已提交
413
                                     self.inception_a_list[1][i])
F
Felix 已提交
414 415 416
            self.inception_block_list.append(inception_a)

        for i in range(len(self.inception_b_list)):
F
Felix 已提交
417
            inception_b = InceptionB(self.inception_b_list[i])
F
Felix 已提交
418 419 420 421
            self.inception_block_list.append(inception_b)

        for i in range(len(self.inception_c_list[0])):
            inception_c = InceptionC(self.inception_c_list[0][i], 
F
Felix 已提交
422
                                     self.inception_c_list[1][i])
F
Felix 已提交
423 424 425
            self.inception_block_list.append(inception_c)

        for i in range(len(self.inception_d_list)):
F
Felix 已提交
426
            inception_d = InceptionD(self.inception_d_list[i])
F
Felix 已提交
427 428 429
            self.inception_block_list.append(inception_d)

        for i in range(len(self.inception_e_list)):
F
Felix 已提交
430
            inception_e = InceptionE(self.inception_e_list[i])
F
Felix 已提交
431 432 433 434 435 436 437 438 439
            self.inception_block_list.append(inception_e)
 
        self.gap = AdaptiveAvgPool2D(1)
        self.drop = Dropout(p=0.2, mode="downscale_in_infer")
        stdv = 1.0 / math.sqrt(2048 * 1.0)
        self.out = Linear(
            2048,
            class_num,
            weight_attr=ParamAttr(
F
Felix 已提交
440 441
                initializer=Uniform(-stdv, stdv)),
            bias_attr=ParamAttr())
F
Felix 已提交
442 443 444 445 446 447 448 449 450 451 452 453

    def forward(self, x):
        y = self.inception_stem(x)
        for inception_block in self.inception_block_list:
           y = inception_block(y)
        y = self.gap(y)
        y = paddle.reshape(y, shape=[-1, 2048])
        y = self.drop(y)
        y = self.out(y)
        return y