Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
4ad209e5
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ad209e5
编写于
5月 28, 2021
作者:
F
Felix
提交者:
GitHub
5月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update inception_v3.py
上级
c98c4e28
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
69 addition
and
51 deletion
+69
-51
ppcls/arch/backbone/legendary_models/inception_v3.py
ppcls/arch/backbone/legendary_models/inception_v3.py
+69
-51
未找到文件。
ppcls/arch/backbone/legendary_models/inception_v3.py
浏览文件 @
4ad209e5
# copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -12,28 +12,32 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
absolute_import
,
division
,
print_function
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
import
math
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
from
ppcls.utils.save_load
import
load_dygraph_pretrain
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
__all__
=
[
"InceptionV3"
]
MODEL_URLS
=
{
"InceptionV3"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams"
,
}
__all__
=
MODEL_URLS
.
keys
()
# InceptionV3 config
# key: inception blocks
# value: conv num in different blocks
'''
InceptionV3 config: dict.
key: inception blocks of InceptionV3.
values: conv num in different blocks.
'''
NET_CONFIG
=
{
'inception_a'
:[[
192
,
256
,
288
],
[
32
,
64
,
64
]],
'inception_b'
:[
288
],
...
...
@@ -42,7 +46,6 @@ NET_CONFIG = {
'inception_e'
:[
1280
,
2048
]
}
class
ConvBNLayer
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
...
...
@@ -53,7 +56,7 @@ class ConvBNLayer(TheseusLayer):
groups
=
1
,
act
=
"relu"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
act
=
act
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
...
...
@@ -63,13 +66,15 @@ class ConvBNLayer(TheseusLayer):
groups
=
groups
,
bias_attr
=
False
)
self
.
batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
num_filters
)
self
.
relu
=
nn
.
ReLU
(
)
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
batch_norm
(
y
)
return
y
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
batch_norm
(
x
)
if
self
.
act
:
x
=
self
.
relu
(
x
)
return
x
class
InceptionStem
(
TheseusLayer
):
def
__init__
(
self
):
...
...
@@ -100,14 +105,14 @@ class InceptionStem(TheseusLayer):
filter_size
=
3
,
act
=
"relu"
)
def
forward
(
self
,
x
):
y
=
self
.
conv_1a_3x3
(
x
)
y
=
self
.
conv_2a_3x3
(
y
)
y
=
self
.
conv_2b_3x3
(
y
)
y
=
self
.
maxpool
(
y
)
y
=
self
.
conv_3b_1x1
(
y
)
y
=
self
.
conv_4a_3x3
(
y
)
y
=
self
.
maxpool
(
y
)
return
y
x
=
self
.
conv_1a_3x3
(
x
)
x
=
self
.
conv_2a_3x3
(
x
)
x
=
self
.
conv_2b_3x3
(
x
)
x
=
self
.
maxpool
(
x
)
x
=
self
.
conv_3b_1x1
(
x
)
x
=
self
.
conv_4a_3x3
(
x
)
x
=
self
.
maxpool
(
x
)
return
x
class
InceptionA
(
TheseusLayer
):
...
...
@@ -158,8 +163,8 @@ class InceptionA(TheseusLayer):
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
outputs
=
paddle
.
concat
([
branch1x1
,
branch5x5
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
outputs
x
=
paddle
.
concat
([
branch1x1
,
branch5x5
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionB
(
TheseusLayer
):
...
...
@@ -195,9 +200,9 @@ class InceptionB(TheseusLayer):
branch_pool
=
self
.
branch_pool
(
x
)
outputs
=
paddle
.
concat
([
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
x
=
paddle
.
concat
([
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
outputs
return
x
class
InceptionC
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
channels_7x7
):
...
...
@@ -273,9 +278,9 @@ class InceptionC(TheseusLayer):
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
outputs
=
paddle
.
concat
([
branch1x1
,
branch7x7
,
branch7x7dbl
,
branch_pool
],
axis
=
1
)
x
=
paddle
.
concat
([
branch1x1
,
branch7x7
,
branch7x7dbl
,
branch_pool
],
axis
=
1
)
return
outputs
return
x
class
InceptionD
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
):
...
...
@@ -321,8 +326,8 @@ class InceptionD(TheseusLayer):
branch_pool
=
self
.
branch_pool
(
x
)
outputs
=
paddle
.
concat
([
branch3x3
,
branch7x7x3
,
branch_pool
],
axis
=
1
)
return
outputs
x
=
paddle
.
concat
([
branch3x3
,
branch7x7x3
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionE
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
):
...
...
@@ -391,12 +396,20 @@ class InceptionE(TheseusLayer):
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
outputs
=
paddle
.
concat
([
branch1x1
,
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
outputs
x
=
paddle
.
concat
([
branch1x1
,
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
x
class
Inception_V3
(
TheseusLayer
):
"""
Inception_V3
Args:
config: dict. config of Inception_V3.
class_num: int=1000. The number of classes.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific Inception_V3 model depends on args.
"""
def
__init__
(
self
,
config
,
class_num
=
1000
,
...
...
@@ -409,7 +422,8 @@ class Inception_V3(TheseusLayer):
self
.
inception_b_list
=
config
[
'inception_b'
]
self
.
inception_d_list
=
config
[
'inception_d'
]
self
.
inception_e_list
=
config
[
'inception_e'
]
self
.
pretrained
=
pretrained
self
.
inception_stem
=
InceptionStem
()
self
.
inception_block_list
=
nn
.
LayerList
()
...
...
@@ -445,20 +459,15 @@ class Inception_V3(TheseusLayer):
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
())
if
pretrained
is
not
None
:
load_dygraph_pretrain
(
self
,
pretrained
)
def
forward
(
self
,
x
):
y
=
self
.
inception_stem
(
x
)
x
=
self
.
inception_stem
(
x
)
for
inception_block
in
self
.
inception_block_list
:
y
=
inception_block
(
y
)
y
=
self
.
gap
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
2048
])
y
=
self
.
drop
(
y
)
y
=
self
.
out
(
y
)
return
y
x
=
inception_block
(
x
)
x
=
self
.
gap
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
2048
])
x
=
self
.
drop
(
x
)
x
=
self
.
out
(
x
)
return
x
def
InceptionV3
(
**
kwargs
):
...
...
@@ -467,10 +476,19 @@ def InceptionV3(**kwargs):
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
pretrained:
str, pretrained model file
pretrained:
bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `InceptionV3` model
"""
model
=
Inception_V3
(
NET_CONFIG
,
**
kwargs
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"InceptionV3"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录