convnext.py 8.5 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
F
flytocc 已提交
2
#
C
cuicheng01 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
flytocc 已提交
6
#
C
cuicheng01 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
F
flytocc 已提交
8
#
C
cuicheng01 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
flytocc 已提交
14 15 16 17 18 19 20 21 22 23
#
# Code was heavily based on https://github.com/facebookresearch/ConvNeXt

import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
Y
Yang Nie 已提交
24
    "ConvNeXt_tiny": "",  # TODO
F
flytocc 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

__all__ = list(MODEL_URLS.keys())

trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


def drop_path(x, drop_prob=0., training=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ChannelsFirstLayerNorm(nn.Layer):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, epsilon=1e-5):
        super().__init__()
        self.weight = self.create_parameter(
            shape=[normalized_shape], default_initializer=ones_)
        self.bias = self.create_parameter(
            shape=[normalized_shape], default_initializer=zeros_)
        self.epsilon = epsilon
        self.normalized_shape = [normalized_shape]

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / paddle.sqrt(s + self.epsilon)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class Block(nn.Layer):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2D(
            dim, dim, 7, padding=3, groups=dim)  # depthwise conv
        self.norm = nn.LayerNorm(dim, epsilon=1e-6)
        # pointwise/1x1 convs, implemented with linear layers
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        if layer_scale_init_value > 0:
            self.gamma = self.create_parameter(
                shape=[dim],
                default_initializer=Constant(value=layer_scale_init_value))
        else:
            self.gamma = None
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.transpose([0, 2, 3, 1])  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose([0, 3, 1, 2])  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXt(nn.Layer):
    r""" ConvNeXt
C
cuicheng01 已提交
133
        A PaddlePaddle impl of : `A ConvNet for the 2020s`  -
F
flytocc 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
          https://arxiv.org/pdf/2201.03545.pdf

    Args:
        in_chans (int): Number of input image channels. Default: 3
        class_num (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self,
                 in_chans=3,
                 class_num=1000,
                 depths=[3, 3, 9, 3],
                 dims=[96, 192, 384, 768],
                 drop_path_rate=0.,
                 layer_scale_init_value=1e-6,
                 head_init_scale=1.):
        super().__init__()

        # stem and 3 intermediate downsampling conv layers
        self.downsample_layers = nn.LayerList()
        stem = nn.Sequential(
            nn.Conv2D(
                in_chans, dims[0], 4, stride=4),
            ChannelsFirstLayerNorm(
                dims[0], epsilon=1e-6))
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                ChannelsFirstLayerNorm(
                    dims[i], epsilon=1e-6),
                nn.Conv2D(
                    dims[i], dims[i + 1], 2, stride=2), )
            self.downsample_layers.append(downsample_layer)

        # 4 feature resolution stages, each consisting of multiple residual blocks
        self.stages = nn.LayerList()
        dp_rates = [
            x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))
        ]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(*[
                Block(
                    dim=dims[i],
                    drop_path=dp_rates[cur + j],
                    layer_scale_init_value=layer_scale_init_value)
                for j in range(depths[i])
            ])
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], epsilon=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], class_num)

        self.apply(self._init_weights)
        self.head.weight.set_value(self.head.weight * head_init_scale)
        self.head.bias.set_value(self.head.bias * head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2D, nn.Linear)):
            trunc_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

    def forward_features(self, x):
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        # global average pooling, (N, C, H, W) -> (N, C)
        return self.norm(x.mean([-2, -1]))

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


Y
Yang Nie 已提交
228
def ConvNeXt_tiny(pretrained=False, use_ssld=False, **kwargs):
F
flytocc 已提交
229 230
    model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    _load_pretrained(
Y
Yang Nie 已提交
231
        pretrained, model, MODEL_URLS["ConvNeXt_tiny"], use_ssld=use_ssld)
F
flytocc 已提交
232
    return model