convnext.py 9.0 KB
Newer Older
F
flytocc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Code was heavily based on https://github.com/facebookresearch/ConvNeXt

import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
    "ConvNext_tiny": "",  # TODO
}

__all__ = list(MODEL_URLS.keys())

trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


def drop_path(x, drop_prob=0., training=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ChannelsFirstLayerNorm(nn.Layer):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, epsilon=1e-5):
        super().__init__()
        self.weight = self.create_parameter(
            shape=[normalized_shape], default_initializer=ones_)
        self.bias = self.create_parameter(
            shape=[normalized_shape], default_initializer=zeros_)
        self.epsilon = epsilon
        self.normalized_shape = [normalized_shape]

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / paddle.sqrt(s + self.epsilon)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class Block(nn.Layer):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2D(
            dim, dim, 7, padding=3, groups=dim)  # depthwise conv
        self.norm = nn.LayerNorm(dim, epsilon=1e-6)
        # pointwise/1x1 convs, implemented with linear layers
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        if layer_scale_init_value > 0:
            self.gamma = self.create_parameter(
                shape=[dim],
                default_initializer=Constant(value=layer_scale_init_value))
        else:
            self.gamma = None
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.transpose([0, 2, 3, 1])  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose([0, 3, 1, 2])  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXt(nn.Layer):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf

    Args:
        in_chans (int): Number of input image channels. Default: 3
        class_num (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self,
                 in_chans=3,
                 class_num=1000,
                 depths=[3, 3, 9, 3],
                 dims=[96, 192, 384, 768],
                 drop_path_rate=0.,
                 layer_scale_init_value=1e-6,
                 head_init_scale=1.):
        super().__init__()

        # stem and 3 intermediate downsampling conv layers
        self.downsample_layers = nn.LayerList()
        stem = nn.Sequential(
            nn.Conv2D(
                in_chans, dims[0], 4, stride=4),
            ChannelsFirstLayerNorm(
                dims[0], epsilon=1e-6))
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                ChannelsFirstLayerNorm(
                    dims[i], epsilon=1e-6),
                nn.Conv2D(
                    dims[i], dims[i + 1], 2, stride=2), )
            self.downsample_layers.append(downsample_layer)

        # 4 feature resolution stages, each consisting of multiple residual blocks
        self.stages = nn.LayerList()
        dp_rates = [
            x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))
        ]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(*[
                Block(
                    dim=dims[i],
                    drop_path=dp_rates[cur + j],
                    layer_scale_init_value=layer_scale_init_value)
                for j in range(depths[i])
            ])
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], epsilon=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], class_num)

        self.apply(self._init_weights)
        self.head.weight.set_value(self.head.weight * head_init_scale)
        self.head.bias.set_value(self.head.bias * head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2D, nn.Linear)):
            trunc_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

    def forward_features(self, x):
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        # global average pooling, (N, C, H, W) -> (N, C)
        return self.norm(x.mean([-2, -1]))

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ConvNext_tiny(pretrained=False, use_ssld=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    _load_pretrained(
        pretrained, model, MODEL_URLS["ConvNext_tiny"], use_ssld=use_ssld)
    return model