提交 e1943f9a 编写于 作者: F flytocc

add ConvNeXt code

上级 fea9522a
......@@ -65,6 +65,7 @@ from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2
from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
from ppcls.arch.backbone.model_zoo.van import VAN_tiny
from ppcls.arch.backbone.model_zoo.convnext import ConvNext_tiny
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
......
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Code was heavily based on https://github.com/facebookresearch/ConvNeXt
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"ConvNext_tiny": "", # TODO
}
__all__ = list(MODEL_URLS.keys())
trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class ChannelsFirstLayerNorm(nn.Layer):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, epsilon=1e-5):
super().__init__()
self.weight = self.create_parameter(
shape=[normalized_shape], default_initializer=ones_)
self.bias = self.create_parameter(
shape=[normalized_shape], default_initializer=zeros_)
self.epsilon = epsilon
self.normalized_shape = [normalized_shape]
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / paddle.sqrt(s + self.epsilon)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Block(nn.Layer):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2D(
dim, dim, 7, padding=3, groups=dim) # depthwise conv
self.norm = nn.LayerNorm(dim, epsilon=1e-6)
# pointwise/1x1 convs, implemented with linear layers
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
if layer_scale_init_value > 0:
self.gamma = self.create_parameter(
shape=[dim],
default_initializer=Constant(value=layer_scale_init_value))
else:
self.gamma = None
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.transpose([0, 2, 3, 1]) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose([0, 3, 1, 2]) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXt(nn.Layer):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
class_num (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(self,
in_chans=3,
class_num=1000,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.,
layer_scale_init_value=1e-6,
head_init_scale=1.):
super().__init__()
# stem and 3 intermediate downsampling conv layers
self.downsample_layers = nn.LayerList()
stem = nn.Sequential(
nn.Conv2D(
in_chans, dims[0], 4, stride=4),
ChannelsFirstLayerNorm(
dims[0], epsilon=1e-6))
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
ChannelsFirstLayerNorm(
dims[i], epsilon=1e-6),
nn.Conv2D(
dims[i], dims[i + 1], 2, stride=2), )
self.downsample_layers.append(downsample_layer)
# 4 feature resolution stages, each consisting of multiple residual blocks
self.stages = nn.LayerList()
dp_rates = [
x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))
]
cur = 0
for i in range(4):
stage = nn.Sequential(*[
Block(
dim=dims[i],
drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value)
for j in range(depths[i])
])
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], epsilon=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], class_num)
self.apply(self._init_weights)
self.head.weight.set_value(self.head.weight * head_init_scale)
self.head.bias.set_value(self.head.bias * head_init_scale)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2D, nn.Linear)):
trunc_normal_(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward_features(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
# global average pooling, (N, C, H, W) -> (N, C)
return self.norm(x.mean([-2, -1]))
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ConvNext_tiny(pretrained=False, use_ssld=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ConvNext_tiny"], use_ssld=use_ssld)
return model
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: ConvNext_tiny
class_num: 1000
drop_path_rate: 0.1
layer_scale_init_value: 1e-6
head_init_scale: 1.0
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
one_dim_param_no_weight_decay: True
lr:
name: Cosine
learning_rate: 5e-4
eta_min: 1e-6
warmup_epoch: 20
warmup_start_lr: 0
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
===========================train_params===========================
model_name:ConvNeXt_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=256 -o PreProcess.transform_ops.1.CropImage.size=224
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册