test_cpp_serving_client.py 3.9 KB
Newer Older
S
stephon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import pickle
S
stephon 已提交
17 18 19

import cv2
import faiss
20 21
import numpy as np
from paddle_serving_client import Client
S
stephon 已提交
22

H
debug  
HydrogenSulfate 已提交
23 24 25 26
rec_nms_thresold = 0.05
rec_score_thres = 0.5
feature_normalize = True
return_k = 1
27
index_dir = "../../drink_dataset_v2.0/index"
H
debug  
HydrogenSulfate 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def init_index(index_dir):
    assert os.path.exists(os.path.join(
        index_dir, "vector.index")), "vector.index not found ..."
    assert os.path.exists(os.path.join(
        index_dir, "id_map.pkl")), "id_map.pkl not found ... "

    searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))

    with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
        id_map = pickle.load(fd)
    return searcher, id_map


43
# get box
H
debug  
HydrogenSulfate 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def nms_to_rec_results(results, thresh=0.1):
    filtered_results = []

    x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
    y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
    x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
    y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
    scores = np.array([r["rec_scores"] for r in results])

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]
    while order.size > 0:
        i = order[0]
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]
        filtered_results.append(results[i])
    return filtered_results


def postprocess(fetch_dict, feature_normalize, det_boxes, searcher, id_map,
                return_k, rec_score_thres, rec_nms_thresold):
    batch_features = fetch_dict["features"]

    #do feature norm
    if feature_normalize:
        feas_norm = np.sqrt(
            np.sum(np.square(batch_features), axis=1, keepdims=True))
        batch_features = np.divide(batch_features, feas_norm)

    scores, docs = searcher.search(batch_features, return_k)

    results = []
    for i in range(scores.shape[0]):
        pred = {}
        if scores[i][0] >= rec_score_thres:
            pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
            pred["rec_docs"] = id_map[docs[i][0]].split()[1]
            pred["rec_scores"] = scores[i][0]
            results.append(pred)

93
    # do NMS
H
debug  
HydrogenSulfate 已提交
94 95 96 97
    results = nms_to_rec_results(results, rec_nms_thresold)
    return results


98
# do client
S
stephon 已提交
99
if __name__ == "__main__":
H
debug  
HydrogenSulfate 已提交
100 101 102
    client = Client()
    client.load_client_config([
        "../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client",
103
        "../../models/general_PPLCNetV2_base_pretrained_v1.0_client"
H
debug  
HydrogenSulfate 已提交
104 105 106
    ])
    client.connect(['127.0.0.1:9400'])

107
    im = cv2.imread("../../drink_dataset_v2.0/test_images/100.jpeg")
H
debug  
HydrogenSulfate 已提交
108 109 110 111 112 113
    im_shape = np.array(im.shape[:2]).reshape(-1)
    fetch_map = client.predict(
        feed={"image": im,
              "im_shape": im_shape},
        fetch=["features", "boxes"],
        batch=False)
H
HydrogenSulfate 已提交
114

115
    # add retrieval procedure
H
debug  
HydrogenSulfate 已提交
116 117 118 119 120
    det_boxes = fetch_map["boxes"]
    searcher, id_map = init_index(index_dir)
    results = postprocess(fetch_map, feature_normalize, det_boxes, searcher,
                          id_map, return_k, rec_score_thres, rec_nms_thresold)
    print(results)