Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
4e0ca2d0
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4e0ca2d0
编写于
12月 29, 2021
作者:
S
stephon
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
upload cplusplus serving
上级
d69a6e8f
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
317 addition
and
6 deletion
+317
-6
deploy/paddleserving/recognition/run_cpp_serving.sh
deploy/paddleserving/recognition/run_cpp_serving.sh
+7
-0
deploy/paddleserving/recognition/test_cpp_serving_client.py
deploy/paddleserving/recognition/test_cpp_serving_client.py
+201
-0
deploy/paddleserving/run_cpp_serving.sh
deploy/paddleserving/run_cpp_serving.sh
+2
-0
deploy/paddleserving/test_cpp_serving_cient.py
deploy/paddleserving/test_cpp_serving_cient.py
+52
-0
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
+55
-6
未找到文件。
deploy/paddleserving/recognition/run_cpp_serving.sh
0 → 100644
浏览文件 @
4e0ca2d0
nohup
python3
-m
paddle_serving_server.serve
\
--model
picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving
\
--port
9293
>>
log_mainbody_detection.txt 1&>2 &
nohup
python3
-m
paddle_serving_server.serve
\
--model
general_PPLCNet_x2_5_lite_v1.0_serving
\
--port
9294
>>
log_feature_extraction.txt 1&>2 &
deploy/paddleserving/recognition/test_cpp_serving_client.py
0 → 100644
浏览文件 @
4e0ca2d0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
import
faiss
import
os
import
pickle
class
MainbodyDetect
():
"""
pp-shitu mainbody detect.
include preprocess, process, postprocess
return detect results
Attention: Postprocess include num limit and box filter; no nms
"""
def
__init__
(
self
):
self
.
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionNormalize
(
[
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionResize
(
(
640
,
640
),
False
,
interpolation
=
2
),
DetectionTranspose
(
(
2
,
0
,
1
))
])
self
.
client
=
Client
()
self
.
client
.
load_client_config
(
"picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/serving_client_conf.prototxt"
)
self
.
client
.
connect
([
'127.0.0.1:9293'
])
self
.
max_det_result
=
5
self
.
conf_threshold
=
0.2
def
predict
(
self
,
imgpath
):
im
,
im_info
=
self
.
preprocess
(
sys
.
argv
[
1
])
im_shape
=
np
.
array
(
im
.
shape
[
1
:]).
reshape
(
-
1
)
scale_factor
=
np
.
array
(
list
(
im_info
[
'scale_factor'
])).
reshape
(
-
1
)
fetch_map
=
self
.
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
im_shape
,
"scale_factor"
:
scale_factor
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
return
self
.
postprocess
(
fetch_map
,
imgpath
)
def
postprocess
(
self
,
fetch_map
,
imgpath
):
#1. get top max_det_result
det_results
=
fetch_map
[
"save_infer_model/scale_0.tmp_1"
]
if
len
(
det_results
)
>
self
.
max_det_result
:
boxes_reserved
=
fetch_map
[
"save_infer_model/scale_0.tmp_1"
][:
self
.
max_det_result
]
else
:
boxes_reserved
=
det_results
#2. do conf threshold
boxes_list
=
[]
for
i
in
range
(
boxes_reserved
.
shape
[
0
]):
if
(
boxes_reserved
[
i
,
1
])
>
self
.
conf_threshold
:
boxes_list
.
append
(
boxes_reserved
[
i
,
:])
#3. add origin image box
origin_img
=
cv2
.
imread
(
imgpath
)
boxes_list
.
append
(
np
.
array
([
0
,
1.0
,
0
,
0
,
origin_img
.
shape
[
1
],
origin_img
.
shape
[
0
]]))
return
np
.
array
(
boxes_list
)
class
ObjectRecognition
():
"""
pp-shitu object recognion for all objects detected by MainbodyDetect.
include preprocess, process, postprocess
preprocess include preprocess for each image and batching.
Batch process
postprocess include retrieval and nms
"""
def
__init__
(
self
):
self
.
client
=
Client
()
self
.
client
.
load_client_config
(
"general_PPLCNet_x2_5_lite_v1.0_client/serving_client_conf.prototxt"
)
self
.
client
.
connect
([
"127.0.0.1:9294"
])
self
.
seq
=
Sequential
([
BGR2RGB
(),
Resize
((
224
,
224
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Transpose
((
2
,
0
,
1
))
])
self
.
searcher
,
self
.
id_map
=
self
.
init_index
()
self
.
rec_nms_thresold
=
0.05
self
.
rec_score_thres
=
0.5
self
.
feature_normalize
=
True
self
.
return_k
=
1
def
init_index
(
self
):
index_dir
=
"../../drink_dataset_v1.0/index"
assert
os
.
path
.
exists
(
os
.
path
.
join
(
index_dir
,
"vector.index"
)),
"vector.index not found ..."
assert
os
.
path
.
exists
(
os
.
path
.
join
(
index_dir
,
"id_map.pkl"
)),
"id_map.pkl not found ... "
searcher
=
faiss
.
read_index
(
os
.
path
.
join
(
index_dir
,
"vector.index"
))
with
open
(
os
.
path
.
join
(
index_dir
,
"id_map.pkl"
),
"rb"
)
as
fd
:
id_map
=
pickle
.
load
(
fd
)
return
searcher
,
id_map
def
predict
(
self
,
det_boxes
,
imgpath
):
#1. preprocess
batch_imgs
=
[]
origin_img
=
cv2
.
imread
(
imgpath
)
for
i
in
range
(
det_boxes
.
shape
[
0
]):
box
=
det_boxes
[
i
]
x1
,
y1
,
x2
,
y2
=
[
int
(
x
)
for
x
in
box
[
2
:]]
cropped_img
=
origin_img
[
y1
:
y2
,
x1
:
x2
,
:].
copy
()
tmp
=
self
.
seq
(
cropped_img
)
batch_imgs
.
append
(
tmp
)
batch_imgs
=
np
.
array
(
batch_imgs
)
#2. process
fetch_map
=
self
.
client
.
predict
(
feed
=
{
"x"
:
batch_imgs
},
fetch
=
[
"features"
],
batch
=
True
)
batch_features
=
fetch_map
[
"features"
]
#3. postprocess
if
self
.
feature_normalize
:
feas_norm
=
np
.
sqrt
(
np
.
sum
(
np
.
square
(
batch_features
),
axis
=
1
,
keepdims
=
True
))
batch_features
=
np
.
divide
(
batch_features
,
feas_norm
)
scores
,
docs
=
self
.
searcher
.
search
(
batch_features
,
self
.
return_k
)
results
=
[]
for
i
in
range
(
scores
.
shape
[
0
]):
pred
=
{}
if
scores
[
i
][
0
]
>=
self
.
rec_score_thres
:
pred
[
"bbox"
]
=
[
int
(
x
)
for
x
in
det_boxes
[
i
,
2
:]]
pred
[
"rec_docs"
]
=
self
.
id_map
[
docs
[
i
][
0
]].
split
()[
1
]
pred
[
"rec_scores"
]
=
scores
[
i
][
0
]
results
.
append
(
pred
)
return
self
.
nms_to_rec_results
(
results
)
def
nms_to_rec_results
(
self
,
results
):
filtered_results
=
[]
x1
=
np
.
array
([
r
[
"bbox"
][
0
]
for
r
in
results
]).
astype
(
"float32"
)
y1
=
np
.
array
([
r
[
"bbox"
][
1
]
for
r
in
results
]).
astype
(
"float32"
)
x2
=
np
.
array
([
r
[
"bbox"
][
2
]
for
r
in
results
]).
astype
(
"float32"
)
y2
=
np
.
array
([
r
[
"bbox"
][
3
]
for
r
in
results
]).
astype
(
"float32"
)
scores
=
np
.
array
([
r
[
"rec_scores"
]
for
r
in
results
])
areas
=
(
x2
-
x1
+
1
)
*
(
y2
-
y1
+
1
)
order
=
scores
.
argsort
()[::
-
1
]
while
order
.
size
>
0
:
i
=
order
[
0
]
xx1
=
np
.
maximum
(
x1
[
i
],
x1
[
order
[
1
:]])
yy1
=
np
.
maximum
(
y1
[
i
],
y1
[
order
[
1
:]])
xx2
=
np
.
minimum
(
x2
[
i
],
x2
[
order
[
1
:]])
yy2
=
np
.
minimum
(
y2
[
i
],
y2
[
order
[
1
:]])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
1
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
1
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
[
i
]
+
areas
[
order
[
1
:]]
-
inter
)
inds
=
np
.
where
(
ovr
<=
self
.
rec_nms_thresold
)[
0
]
order
=
order
[
inds
+
1
]
filtered_results
.
append
(
results
[
i
])
return
filtered_results
if
__name__
==
"__main__"
:
det
=
MainbodyDetect
()
rec
=
ObjectRecognition
()
#1. get det_results
det_results
=
det
.
predict
(
sys
.
argv
[
1
])
print
(
det_results
)
#2. get rec_results
rec_results
=
rec
.
predict
(
det_results
,
sys
.
argv
[
1
])
print
(
rec_results
)
deploy/paddleserving/run_cpp_serving.sh
0 → 100644
浏览文件 @
4e0ca2d0
#run cls server:
nohup
python3
-m
paddle_serving_server.serve
--model
ResNet50_vd_serving
--port
9292 &
deploy/paddleserving/test_cpp_serving_cient.py
0 → 100644
浏览文件 @
4e0ca2d0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
from
paddle_serving_client
import
Client
#app
from
paddle_serving_app.reader
import
Sequential
,
URL2Image
,
Resize
from
paddle_serving_app.reader
import
CenterCrop
,
RGB2BGR
,
Transpose
,
Div
,
Normalize
import
time
client
=
Client
()
client
.
load_client_config
(
"./ResNet50_vd_serving/serving_server_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9292"
])
label_dict
=
{}
label_idx
=
0
with
open
(
"imagenet.label"
)
as
fin
:
for
line
in
fin
:
label_dict
[
label_idx
]
=
line
.
strip
()
label_idx
+=
1
#preprocess
seq
=
Sequential
([
URL2Image
(),
Resize
(
256
),
CenterCrop
(
224
),
RGB2BGR
(),
Transpose
((
2
,
0
,
1
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
)
])
start
=
time
.
time
()
image_file
=
"https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for
i
in
range
(
1
):
img
=
seq
(
image_file
)
fetch_map
=
client
.
predict
(
feed
=
{
"inputs"
:
img
},
fetch
=
[
"prediction"
],
batch
=
False
)
prob
=
max
(
fetch_map
[
"prediction"
][
0
])
label
=
label_dict
[
fetch_map
[
"prediction"
][
0
].
tolist
().
index
(
prob
)].
strip
(
).
replace
(
","
,
""
)
print
(
"prediction: {}, probability: {}"
.
format
(
label
,
prob
))
end
=
time
.
time
()
print
(
end
-
start
)
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
浏览文件 @
4e0ca2d0
...
...
@@ -4,9 +4,13 @@
-
[
3. 图像分类服务部署
](
#3
)
-
[
3.1 模型转换
](
#3.1
)
-
[
3.2 服务部署和请求
](
#3.2
)
-
[
3.2.1 Python Serving
](
#3.2.1
)
-
[
3.2.2 C++ Serving
](
#3.2.2
)
-
[
4. 图像识别服务部署
](
#4
)
-
[
4.1 模型转换
](
#4.1
)
-
[
4.2 服务部署和请求
](
#4.2
)
-
[
4.2.1 Python Serving
](
#4.2.1
)
-
[
4.2.2 C++ Serving
](
#4.2.2
)
-
[
5. FAQ
](
#5
)
<a
name=
"1"
></a>
...
...
@@ -88,7 +92,7 @@ ResNet50_vd 推理模型转换完成后,会在当前文件夹多出 `ResNet50_
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
```
得到模型文件之后,需要
修改
`ResNet50_vd_server
`
下文件
`serving_server_conf.prototxt`
中的 alias 名字:将
`fetch_var`
中的
`alias_name`
改为
`prediction`
得到模型文件之后,需要
分别修改
`ResNet50_vd_server`
和
`ResNet50_vd_client
`
下文件
`serving_server_conf.prototxt`
中的 alias 名字:将
`fetch_var`
中的
`alias_name`
改为
`prediction`
**备注**
: Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。
修改后的 serving_server_conf.prototxt 如下所示:
...
...
@@ -112,15 +116,18 @@ fetch_var {
```
<a
name=
"3.2"
></a>
### 3.2 服务部署和请求
paddleserving 目录包含了启动 pipeline 服务和发送预测请求的代码,包括:
paddleserving 目录包含了启动 pipeline 服务
、C++ serving服务
和发送预测请求的代码,包括:
```
shell
__init__.py
config.yml
# 启动服务的配置文件
config.yml
# 启动
pipeline
服务的配置文件
pipeline_http_client.py
# http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py
# rpc方式发送pipeline预测请求的脚本
classification_web_service.py
# 启动pipeline服务端的脚本
run_cpp_serving.sh
# 启动C++ Serving部署的脚本
test_cpp_serving_client.py
# rpc方式发送C++ serving预测请求的脚本
```
<a
name=
"3.2.1"
></a>
#### 3.2.1 Python Serving
-
启动服务:
```
shell
# 启动服务,运行日志保存在 log.txt
...
...
@@ -137,6 +144,22 @@ python3 pipeline_http_client.py
成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results.png
)
<a
name=
"3.2.2"
></a>
#### 3.2.2 C++ Serving
-
启动服务:
```
shell
# 启动服务, 服务在后台运行,运行日志保存在 nohup.txt
sh run_cpp_serving.sh
```
-
发送请求:
```
shell
# 发送服务请求
python3 test_cpp_serving_client.py
```
成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results_cpp.png
)
<a
name=
"4"
></a>
## 4.图像识别服务部署
使用 PaddleServing 做服务化部署时,需要将保存的 inference 模型转换为 Serving 模型。 下面以 PP-ShiTu 中的超轻量图像识别模型为例,介绍图像识别服务的部署。
...
...
@@ -162,7 +185,11 @@ python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v
--serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
--serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
```
<<<<<<< HEAD
识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_serving/` 的文件夹。分别修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。
=======
识别推理模型转换完成后,会在当前文件夹多出
`general_PPLCNet_x2_5_lite_v1.0_serving/`
和
`general_PPLCNet_x2_5_lite_v1.0_client/`
的文件夹。修改
`general_PPLCNet_x2_5_lite_v1.0_serving/`
目录下的 serving_server_conf.prototxt 中的 alias 名字: 将
`fetch_var`
中的
`alias_name`
改为
`features`
。
>>>>>>> d69a6e8f242cd894b41e9608bbca23172bcd3193
修改后的 serving_server_conf.prototxt 内容如下:
```
feed_var {
...
...
@@ -207,14 +234,19 @@ wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_da
```
shell
cd
./deploy/paddleserving/recognition
```
paddleserving 目录包含启动
pipeline
服务和发送预测请求的代码,包括:
paddleserving 目录包含启动
Python Pipeline 服务、C++ Serving
服务和发送预测请求的代码,包括:
```
__init__.py
config.yml # 启动服务的配置文件
config.yml # 启动
python pipeline
服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
recognition_web_service.py # 启动pipeline服务端的脚本
run_cpp_serving.sh # 启动C++ Serving部署的脚本
test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
```
<a
name=
"4.2.1"
></a>
#### 4.2.1 Python Serving
-
启动服务:
```
# 启动服务,运行日志保存在 log.txt
...
...
@@ -230,6 +262,23 @@ python3 pipeline_http_client.py
成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results_shitu.png
)
<a
name=
"4.2.2"
></a>
#### 4.2.2 C++ Serving
-
启动服务:
```
shell
# 启动服务: 此处会在后台同时启动主体检测和特征提取服务,端口号分别为9293和9294;
# 运行日志分别保存在 log_mainbody_detection.txt 和 log_feature_extraction.txt中
sh run_cpp_serving.sh
```
-
发送请求:
```
shell
# 发送服务请求
python3 test_cpp_serving_client.py
```
成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results_shitu_cpp.png
)
<a
name=
"5"
></a>
## 5.FAQ
**Q1**
: 发送请求后没有结果返回或者提示输出解码报错
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录