# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import cv2 import faiss import numpy as np from paddle_serving_client import Client rec_nms_thresold = 0.05 rec_score_thres = 0.5 feature_normalize = True return_k = 1 index_dir = "../../drink_dataset_v2.0/index" def init_index(index_dir): assert os.path.exists(os.path.join( index_dir, "vector.index")), "vector.index not found ..." assert os.path.exists(os.path.join( index_dir, "id_map.pkl")), "id_map.pkl not found ... " searcher = faiss.read_index(os.path.join(index_dir, "vector.index")) with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd: id_map = pickle.load(fd) return searcher, id_map # get box def nms_to_rec_results(results, thresh=0.1): filtered_results = [] x1 = np.array([r["bbox"][0] for r in results]).astype("float32") y1 = np.array([r["bbox"][1] for r in results]).astype("float32") x2 = np.array([r["bbox"][2] for r in results]).astype("float32") y2 = np.array([r["bbox"][3] for r in results]).astype("float32") scores = np.array([r["rec_scores"] for r in results]) areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] while order.size > 0: i = order[0] xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] filtered_results.append(results[i]) return filtered_results def postprocess(fetch_dict, feature_normalize, det_boxes, searcher, id_map, return_k, rec_score_thres, rec_nms_thresold): batch_features = fetch_dict["features"] #do feature norm if feature_normalize: feas_norm = np.sqrt( np.sum(np.square(batch_features), axis=1, keepdims=True)) batch_features = np.divide(batch_features, feas_norm) scores, docs = searcher.search(batch_features, return_k) results = [] for i in range(scores.shape[0]): pred = {} if scores[i][0] >= rec_score_thres: pred["bbox"] = [int(x) for x in det_boxes[i, 2:]] pred["rec_docs"] = id_map[docs[i][0]].split()[1] pred["rec_scores"] = scores[i][0] results.append(pred) # do NMS results = nms_to_rec_results(results, rec_nms_thresold) return results # do client if __name__ == "__main__": client = Client() client.load_client_config([ "../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client", "../../models/general_PPLCNetV2_base_pretrained_v1.0_client" ]) client.connect(['127.0.0.1:9400']) im = cv2.imread("../../drink_dataset_v2.0/test_images/100.jpeg") im_shape = np.array(im.shape[:2]).reshape(-1) fetch_map = client.predict( feed={"image": im, "im_shape": im_shape}, fetch=["features", "boxes"], batch=False) # add retrieval procedure det_boxes = fetch_map["boxes"] searcher, id_map = init_index(index_dir) results = postprocess(fetch_map, feature_normalize, det_boxes, searcher, id_map, return_k, rec_score_thres, rec_nms_thresold) print(results)