ImageNet_models.md 107.2 KB
Newer Older
G
gaotingquan 已提交
1
<!-- 简体中文 | [English](../../en/algorithm_introduction/ImageNet_models.md) -->
C
cuicheng01 已提交
2 3


S
sibo2rr 已提交
4 5 6 7
# ImageNet 预训练模型库

## 目录

S
sibo2rr 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20
- [1. 模型库概览图](#1)
- [2. SSLD 知识蒸馏预训练模型](#2)
  - [2.1 服务器端知识蒸馏模型](#2.1)
  - [2.2 移动端知识蒸馏模型](#2.2)
  - [2.3 Intel CPU 端知识蒸馏模型](#2.3)
- [3. PP-LCNet 系列](#3)
- [4. ResNet 系列](#4)
- [5. 移动端系列](#5)
- [6. SEResNeXt 与 Res2Net 系列](#6)
- [7. DPN 与 DenseNet 系列](#7)
- [8. HRNet 系列](#8)
- [9. Inception 系列](#9)
- [10. EfficientNet 与 ResNeXt101_wsl 系列](#10)
21
- [11. ResNeSt 与 RegNet 系列](#11)
S
sibo2rr 已提交
22 23 24 25 26 27 28 29 30 31 32 33
- [12. ViT_and_DeiT 系列](#12)
- [13. RepVGG 系列](#13)
- [14. MixNet 系列](#14)
- [15. ReXNet 系列](#15)
- [16. SwinTransformer 系列](#16)
- [17. LeViT 系列](#17)
- [18. Twins 系列](#18)
- [19. HarDNet 系列](#19)
- [20. DLA 系列](#20)
- [21. RedNet 系列](#21)
- [22. TNT 系列](#22)
- [23. 其他模型](#23)
34
- [参考文献](#reference)
S
sibo2rr 已提交
35 36 37 38 39 40 41 42

<a name="1"></a>

## 1. 模型库概览图

基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* Arm CPU 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
S
sibo2rr 已提交
43
* GPU 评估环境基于 V100 机器,在 FP32+TensorRT 配置下运行 2100 次测得(去除前 100 次的 warmup 时间)。
S
sibo2rr 已提交
44
* FLOPs 与 Params 通过 `paddle.flops()` 计算得到(PaddlePaddle 版本为 2.2)
C
cuicheng01 已提交
45 46 47

常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。

S
sibo2rr 已提交
48
![](../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png)
C
cuicheng01 已提交
49

G
gaotingquan 已提交
50
常见移动端模型的精度指标与其预测耗时的变化曲线如下图所示。
C
cuicheng01 已提交
51

S
sibo2rr 已提交
52
![](../../images/models/mobile_arm_top1.png)
C
cuicheng01 已提交
53

S
sibo2rr 已提交
54
部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示.
G
gaotingquan 已提交
55

S
sibo2rr 已提交
56
![](../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png)
G
gaotingquan 已提交
57

S
sibo2rr 已提交
58
<a name="2"></a>
C
cuicheng01 已提交
59

S
sibo2rr 已提交
60 61
## 2. SSLD 知识蒸馏预训练模型
基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于 SSLD 知识蒸馏方案的介绍可以参考:[SSLD 知识蒸馏文档](./knowledge_distillation.md)
C
cuicheng01 已提交
62

S
sibo2rr 已提交
63
<a name="2.1"></a>
S
sibo2rr 已提交
64

S
sibo2rr 已提交
65
### 2.1 服务器端知识蒸馏模型
C
cuicheng01 已提交
66

S
sibo2rr 已提交
67
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
68
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
G
gaotingquan 已提交
69
| ResNet34_vd_ssld         | 0.797    | 0.760  | 0.037  | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)&emsp;&emsp;</span> | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar)&emsp;&emsp;</span> |
S
sibo2rr 已提交
70
| ResNet50_vd_ssld | 0.830    | 0.792    | 0.039 | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
S
sibo2rr 已提交
71
| ResNet101_vd_ssld   | 0.837    | 0.802    | 0.035 | 4.43             | 8.25             | 12.60     | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
S
sibo2rr 已提交
72 73 74 75 76
| Res2Net50_vd_26w_4s_ssld | 0.831    | 0.798    | 0.033 | 3.59             | 6.35             | 9.50              | 4.28     | 25.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar) |
| Res2Net101_vd_<br>26w_4s_ssld | 0.839    | 0.806    | 0.033 | 6.34             | 11.02            | 16.13             | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.851    | 0.812    | 0.049 | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |
| HRNet_W18_C_ssld | 0.812    | 0.769   | 0.043 | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
| HRNet_W48_C_ssld | 0.836    | 0.790   | 0.046  | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
S
sibo2rr 已提交
77
| SE_HRNet_W64_C_ssld | 0.848    |  -    |  - | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
C
cuicheng01 已提交
78

S
sibo2rr 已提交
79 80 81
<a name="2.2"></a>

### 2.2 移动端知识蒸馏模型
C
cuicheng01 已提交
82

S
sibo2rr 已提交
83
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
84
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
S
sibo2rr 已提交
85 86
| MobileNetV1_ssld   | 0.779    | 0.710    | 0.069 | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
| MobileNetV2_ssld                 | 0.767    | 0.722  | 0.045  | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
S
sibo2rr 已提交
87
| MobileNetV3_small_x0_35_ssld          | 0.556    | 0.530 | 0.026   | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
S
sibo2rr 已提交
88 89 90
| MobileNetV3_large_x1_0_ssld      | 0.790    | 0.753  | 0.036  | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_x1_0_ssld      | 0.713    | 0.682  |  0.031  | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| GhostNet_x1_3_ssld                    | 0.794    | 0.757   | 0.037 | 19.16                            | 12.25     | 9.40     | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
C
cuicheng01 已提交
91

S
sibo2rr 已提交
92
<a name="2.3"></a>
C
cuicheng01 已提交
93

S
sibo2rr 已提交
94
### 2.3 Intel CPU 端知识蒸馏模型
C
cuicheng01 已提交
95

S
sibo2rr 已提交
96
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain |  Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M)  | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
97 98 99 100
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|-----------------------------------|
| PPLCNet_x0_5_ssld   | 0.661    | 0.631    | 0.030 | 2.05     | 47.28     |   1.89   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_ssld_infer.tar) |
| PPLCNet_x1_0_ssld   | 0.744    | 0.713    | 0.033 | 2.46     | 160.81     |   2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_ssld_infer.tar) |
| PPLCNet_x2_5_ssld   | 0.808    | 0.766    | 0.042 | 5.39     | 906.49     |   9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_ssld_infer.tar) |
C
cuicheng01 已提交
101

102
* 注: `Reference Top-1 Acc` 表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。
C
cuicheng01 已提交
103

S
sibo2rr 已提交
104
<a name="3"></a>
C
cuicheng01 已提交
105

106
## 3. PP-LCNet 系列 <sup>[[28](#ref28)]</sup>
S
sibo2rr 已提交
107 108

PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)
C
cuicheng01 已提交
109

S
sibo2rr 已提交
110
| 模型           | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
111 112 113 114 115 116 117 118 119
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNet_x0_25        |0.5186           | 0.7565   | 1.61785 | 18.25    | 1.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) |
| PPLCNet_x0_35        |0.5809           | 0.8083   | 2.11344 | 29.46    | 1.65  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) |
| PPLCNet_x0_5         |0.6314           | 0.8466   | 2.72974 | 47.28    | 1.89  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) |
| PPLCNet_x0_75        |0.6818           | 0.8830   | 4.51216 | 98.82    | 2.37  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) |
| PPLCNet_x1_0         |0.7132           | 0.9003   | 6.49276 | 160.81   | 2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) |
| PPLCNet_x1_5         |0.7371           | 0.9153   | 12.2601 | 341.86   | 4.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) |
| PPLCNet_x2_0         |0.7518           | 0.9227   | 20.1667 | 590   | 6.54  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
| PPLCNet_x2_5         |0.7660           | 0.9300   | 29.595 | 906   | 9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |
C
cuicheng01 已提交
120

S
sibo2rr 已提交
121
<a name="4"></a>
C
cuicheng01 已提交
122

123
## 4. ResNet 系列 <sup>[[1](#ref1)]</sup>
C
cuicheng01 已提交
124

S
sibo2rr 已提交
125
ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 及其 Vd 系列模型文档](../models/ResNet_and_vd.md)
C
cuicheng01 已提交
126

S
sibo2rr 已提交
127
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                      |
S
sibo2rr 已提交
128 129 130 131 132
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.22             | 2.19             | 3.63         | 1.83     | 11.70     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar) |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.26             | 2.28             | 3.89         | 2.07     | 11.72     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar) |
| ResNet34            | 0.7457    | 0.9214    | 1.97             | 3.25             | 5.70         | 3.68     | 21.81     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar) |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.00             | 3.28             | 5.84         | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar) |
S
sibo2rr 已提交
133
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar) |
S
sibo2rr 已提交
134 135 136 137 138 139 140 141
| ResNet50            | 0.7650    | 0.9300    | 2.54             | 4.79             | 7.40         | 4.11     | 25.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar) |
| ResNet50_vc         | 0.7835    | 0.9403    | 2.57             | 4.83             | 7.52         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar) |
| ResNet50_vd         | 0.7912    | 0.9444    | 2.60             | 4.86             | 7.63         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar) |
| ResNet101           | 0.7756    | 0.9364    | 4.37             | 8.18             | 12.38       | 7.83    | 44.65     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar) |
| ResNet101_vd        | 0.8017    | 0.9497    | 4.43             | 8.25             | 12.60       | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar) |
| ResNet152           | 0.7826    | 0.9396    | 6.05             | 11.41            | 17.33       | 11.56    | 60.34     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar) |
| ResNet152_vd        | 0.8059    | 0.9530    | 6.11             | 11.51            | 17.59       | 11.80    | 60.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar) |
| ResNet200_vd        | 0.8093    | 0.9533    | 7.70             | 14.57            | 22.16       | 15.30    | 74.93     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar) |
S
sibo2rr 已提交
142 143
| ResNet50_vd_<br>ssld | 0.8300    | 0.9640    | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 4.43             | 8.25             | 12.60             | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
C
cuicheng01 已提交
144

S
sibo2rr 已提交
145
<a name="5"></a>
C
cuicheng01 已提交
146

147
## 5. 移动端系列 <sup>[[3](#ref3)][[4](#ref4)][[5](#ref5)][[6](#ref6)][[23](#ref23)]</sup>
C
cuicheng01 已提交
148

C
cuicheng01 已提交
149
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](../models/Mobile.md)
C
cuicheng01 已提交
150

S
sibo2rr 已提交
151
| 模型          | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
152 153 154 155 156
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 2.88 | 1.82  | 1.26  | 43.56     | 0.48      | 1.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_25_infer.tar) |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 8.74                             | 5.26                              | 3.09                              | 154.57     | 1.34      | 5.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_5_infer.tar) |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 17.84 | 10.61 | 6.21 | 333.00     | 2.60      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_75_infer.tar) |
| MobileNetV1                      | 0.7099    | 0.8968    | 30.24 | 17.86 | 10.30 | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar) |
S
sibo2rr 已提交
157
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
S
sibo2rr 已提交
158 159 160 161 162 163
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.46 | 2.51 | 2.03 | 34.18     | 1.53       | 6.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_25_infer.tar) |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 7.69 | 4.92  | 3.57  | 99.48     | 1.98      | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_5_infer.tar) |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 13.69 | 8.60 | 5.82 | 197.37     | 2.65      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_75_infer.tar) |
| MobileNetV2                      | 0.7215    | 0.9065    | 20.74 | 12.71 | 8.10 | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_infer.tar) |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 40.79 | 24.49 | 15.50 | 702.35     | 6.90      | 26      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x1_5_infer.tar) |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 67.50 | 40.03 | 25.55 | 1217.25     | 11.33     | 43      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x2_0_infer.tar) |
S
sibo2rr 已提交
164
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
S
sibo2rr 已提交
165 166 167 168 169 170 171 172 173 174
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 24.52 | 14.76 | 9.89 | 362.70    | 7.47      | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_25_infer.tar) |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 16.55 | 10.09 | 6.84 | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar) |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 11.53  | 7.06  | 4.94  | 151.70    | 3.93      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_75_infer.tar) |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 6.50 | 4.22  | 3.15 | 71.83    | 2.69      | 11      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_5_infer.tar) |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 4.43 | 3.11  | 2.41 | 40.90    | 2.11       | 8.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_35_infer.tar) |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 7.88   | 4.91  | 3.45  | 100.07    | 3.64      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_25_infer.tar) |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 5.63   | 3.65  | 2.60 | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_infer.tar) |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 4.50  | 2.96  | 2.19  | 46.02    | 2.38      | 9.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar) |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 2.89 | 2.04 | 1.62  | 22.60    | 1.91       | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar) |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.23  | 1.66    | 1.43   | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar) |
S
sibo2rr 已提交
175
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
S
sibo2rr 已提交
176 177
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
S
sibo2rr 已提交
178 179 180 181 182 183 184 185 186 187
| ShuffleNetV2                     | 0.6880    | 0.8845    | 9.72  | 5.97   | 4.13    | 148.86     | 2.29      | 9       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams)                     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar) |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 1.94    | 1.53   | 1.43    | 18.95     | 0.61       | 2.7     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_25_infer.tar) |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.23 | 1.70 | 1.79   | 24.04     | 0.65      | 2.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_33_infer.tar) |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 3.67   | 2.63   | 2.06   | 42.58     | 1.37      | 5.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_5_infer.tar) |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 17.21 | 10.56 | 6.81  | 301.35     | 3.53      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_5_infer.tar) |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 31.21 | 18.98 | 11.65 | 571.70     | 7.40      | 28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x2_0_infer.tar) |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 31.21 | 9.06 | 5.74 | 148.86     | 2.29      | 9.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_swish_infer.tar) |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.28   | 3.95   | 3.29  | 46.15    | 2.60       | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x0_5_infer.tar) |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 12.89 | 8.66 | 6.72 | 148.78    | 5.21       | 20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_0_infer.tar) |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.16 | 12.25 | 9.40 | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_infer.tar) |
S
sibo2rr 已提交
188
| GhostNet_<br>x1_3_ssld                    | 0.7938    | 0.9449    | 19.16                            | 12.25                             | 9.40                              | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
S
sibo2rr 已提交
189 190 191 192
| ESNet_x0_25 | 0.6248 | 0.8346 |4.12|2.97|2.51| 30.85 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_25_infer.tar) |
| ESNet_x0_5 | 0.6882 | 0.8804 |6.45|4.42|3.35| 67.31 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_5_infer.tar)               |
| ESNet_x0_75 | 0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar)               |
| ESNet_x1_0 | 0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar)               |
C
cuicheng01 已提交
193

S
sibo2rr 已提交
194
<a name="6"></a>
C
cuicheng01 已提交
195

196
## 6. SEResNeXt 与 Res2Net 系列 <sup>[[7](#ref7)][[8](#ref8)][[9](#ref9)]</sup>
C
cuicheng01 已提交
197

S
sibo2rr 已提交
198
SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt 与 Res2Net 系列模型文档](../models/SEResNext_and_Res2Net.md)
C
cuicheng01 已提交
199 200


S
sibo2rr 已提交
201
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址               |
S
sibo2rr 已提交
202 203 204 205 206 207
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 3.52             | 6.23             | 9.30         | 4.28     | 25.76      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar) |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 3.59             | 6.35             | 9.50         | 4.52     | 25.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar) |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 4.39             | 7.21             | 10.38       | 4.20     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar) |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 6.34             | 11.02            | 16.13       | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar) |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 11.45            | 19.77            | 28.81       | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar) |
S
sibo2rr 已提交
208
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |
S
sibo2rr 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 5.07             | 8.49             | 12.02        | 4.26     | 25.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar) |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 5.29             | 8.68             | 12.33       | 4.50     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar) |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 9.39             | 13.97            | 20.56        | 8.02    | 45.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar) |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 9.75             | 14.14            | 20.84       | 8.26    | 45.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar) |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 11.34            | 16.78            | 22.80       | 8.01    | 44.32     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar) |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 11.36            | 17.01            | 23.07       | 8.25    | 44.33     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar) |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 21.57            | 28.08            | 39.49       | 15.52    | 83.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar) |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 21.57            | 28.22            | 39.70       | 15.76    | 83.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar) |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 17.14            | 25.11            | 33.79       | 11.76    | 60.15     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar) |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 16.99            | 25.29            | 33.85       | 12.01    | 60.17      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar) |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 33.07            | 42.05            | 59.13       | 23.03    | 115.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar) |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 33.30            | 42.41            | 59.42       | 23.27    | 115.29   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar) |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.48             | 2.70             | 4.32         | 2.07     | 11.81      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar) |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.42             | 3.69             | 6.29         | 3.93     | 22.00     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar) |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 3.11             | 5.99             | 9.34        | 4.36     | 28.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar) |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 6.39             | 11.01            | 14.94         | 4.27     | 27.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar) |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 7.04             | 11.57            | 16.01       | 5.64    | 27.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar) |
| SE_ResNeXt101_<br>32x4d       | 0.7939    | 0.9443    | 13.31            | 21.85            | 28.77       | 8.03    | 49.09     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar) |
| SENet154_vd               | 0.8140    | 0.9548    | 34.83            | 51.22            | 69.74       | 24.45    | 122.03    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar) |
C
cuicheng01 已提交
228

S
sibo2rr 已提交
229
<a name="7"></a>
C
cuicheng01 已提交
230

231
## 7. DPN 与 DenseNet 系列 <sup>[[14](#ref14)][[15](#ref15)]</sup>
C
cuicheng01 已提交
232

S
sibo2rr 已提交
233
DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 与 DenseNet 系列模型文档](../models/DPN_DenseNet.md)
C
cuicheng01 已提交
234 235


S
sibo2rr 已提交
236
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址 |
S
sibo2rr 已提交
237 238 239 240 241 242 243 244 245 246 247
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DenseNet121 | 0.7566    | 0.9258    | 3.40             | 6.94             | 9.17         | 2.87     | 8.06      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 7.06             | 14.37            | 19.55       | 7.79    | 28.90     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 5.00             | 10.29            | 12.84       | 3.40     | 14.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 6.38             | 13.72            | 17.17       | 4.34     | 20.24     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 9.34             | 20.95            | 25.41       | 5.82    | 33.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar) |
| DPN68       | 0.7678    | 0.9343    | 8.18             | 11.40            | 14.82       | 2.35     | 12.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar) |
| DPN92       | 0.7985    | 0.9480    | 12.48            | 20.04            | 25.10       | 6.54    | 37.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar) |
| DPN98       | 0.8059    | 0.9510    | 14.70            | 25.55            | 35.12       | 11.728    | 61.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar) |
| DPN107      | 0.8089    | 0.9532    | 19.46            | 35.62            | 50.22       | 18.38    | 87.13     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar) |
| DPN131      | 0.8070    | 0.9514    | 19.64            | 34.60            | 47.42       | 16.09    | 79.48     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar) |
C
cuicheng01 已提交
248

S
sibo2rr 已提交
249 250
<a name="8"></a>

251
## 8. HRNet 系列 <sup>[[13](#ref13)]</sup>
C
cuicheng01 已提交
252

S
sibo2rr 已提交
253
HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](../models/HRNet.md)
C
cuicheng01 已提交
254

S
sibo2rr 已提交
255
| 模型          | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                      | inference模型下载地址             |
S
sibo2rr 已提交
256 257
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692    | 0.9339    | 6.66             | 8.94             | 11.95   | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar) |
S
sibo2rr 已提交
258
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
S
sibo2rr 已提交
259 260 261 262 263
| HRNet_W30_C | 0.7804    | 0.9402    | 8.61             | 11.40            | 15.23   | 8.15   | 37.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 8.54             | 11.58            | 15.57   | 8.97    | 41.30     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 9.83             | 15.02            | 20.92   | 12.74    | 57.64     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 10.62            | 16.18            | 25.92   | 14.94    | 67.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 11.07            | 17.06            | 27.28   | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar) |
S
sibo2rr 已提交
264
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
S
sibo2rr 已提交
265 266
| HRNet_W64_C | 0.7930    | 0.9461    | 13.82            | 21.15            | 35.51    | 28.97    | 128.18    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.8475    |  0.9726    | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
C
cuicheng01 已提交
267

S
sibo2rr 已提交
268
<a name="9"></a>
C
cuicheng01 已提交
269

270
## 9. Inception 系列 <sup>[[10](#ref10)][[11](#ref11)][[12](#ref12)][[26](#ref26)]</sup>
C
cuicheng01 已提交
271

S
sibo2rr 已提交
272
Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](../models/Inception.md)
C
cuicheng01 已提交
273

S
sibo2rr 已提交
274
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                     |
S
sibo2rr 已提交
275 276 277 278 279 280 281 282 283
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.41             | 3.25             | 5.00         | 1.44     | 11.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar) |
| Xception41         | 0.7930    | 0.9453    | 3.58             | 8.76             | 16.61       | 8.57    | 23.02     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar) |
| Xception41_deeplab | 0.7955    | 0.9438    | 3.81             | 9.16             | 17.20       | 9.28    | 27.08     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar) |
| Xception65         | 0.8100    | 0.9549    | 5.45             | 12.78            | 24.53       | 13.25    | 36.04     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar) |
| Xception65_deeplab | 0.8032    | 0.9449    | 5.65             | 13.08            | 24.61       | 13.96    | 40.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar) |
| Xception71         | 0.8111    | 0.9545    | 6.19             | 15.34            | 29.21       | 16.21    | 37.86     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar) |
| InceptionV3        | 0.7914    | 0.9459    | 4.78             | 8.53             | 12.28        | 5.73    | 23.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar) |
| InceptionV4        | 0.8077    | 0.9526    | 8.93             | 15.17            | 21.56       | 12.29    | 42.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar) |
C
cuicheng01 已提交
284

S
sibo2rr 已提交
285
<a name="10"></a>
C
cuicheng01 已提交
286

287
## 10. EfficientNet 与 ResNeXt101_wsl 系列 <sup>[[16](#ref16)][[17](#ref17)]</sup>
C
cuicheng01 已提交
288

S
sibo2rr 已提交
289
EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 与 ResNeXt101_wsl 系列模型文档](../models/EfficientNet_and_ResNeXt101_wsl.md)
C
cuicheng01 已提交
290

S
sibo2rr 已提交
291
| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                    | inference模型下载地址                           |
S
sibo2rr 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 13.55            | 23.39            | 36.18   | 16.48    | 88.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar) |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 21.96            | 38.35            | 63.29   | 36.26    | 194.36    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar) |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 37.28            | 76.50            | 121.56 | 87.28   | 469.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar) |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 55.07            | 124.39           | 205.01 | 153.57   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar) |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 55.01            | 122.63           | 204.66 | 313.41   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar) |
| EfficientNetB0            | 0.7738    | 0.9331    | 1.96             | 3.71             | 5.56     | 0.40     | 5.33       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar) |
| EfficientNetB1            | 0.7915    | 0.9441    | 2.88             | 5.40             | 7.63     | 0.71     | 7.86      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar) |
| EfficientNetB2            | 0.7985    | 0.9474    | 3.26             | 6.20             | 9.17    | 1.02     | 9.18      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar) |
| EfficientNetB3            | 0.8115    | 0.9541    | 4.52             | 8.85             | 13.54   | 1.88     | 12.324     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar) |
| EfficientNetB4            | 0.8285    | 0.9623    | 6.78             | 15.47            | 24.95   | 4.51     | 19.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar) |
| EfficientNetB5            | 0.8362    | 0.9672    | 10.97            | 27.24            | 45.93   | 10.51    | 30.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar) |
| EfficientNetB6            | 0.8400    | 0.9688    | 17.09            | 43.32            | 76.90          | 19.47    | 43.27        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar) |
| EfficientNetB7            | 0.8430    | 0.9689    | 25.91            | 71.23            | 128.20         | 38.45    | 66.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar) |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 1.24             | 2.59             | 3.92     | 0.40     | 4.69      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar) |
C
cuicheng01 已提交
307

S
sibo2rr 已提交
308
<a name="11"></a>
C
cuicheng01 已提交
309

310
## 11. ResNeSt 与 RegNet 系列 <sup>[[24](#ref24)][[25](#ref25)]</sup>
C
cuicheng01 已提交
311

S
sibo2rr 已提交
312
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](../models/ResNeSt_RegNet.md)
C
cuicheng01 已提交
313

S
sibo2rr 已提交
314
| 模型                   | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                      | inference模型下载地址                          |
S
sibo2rr 已提交
315 316 317 318
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 2.73             | 5.33             | 8.24           | 4.36     | 26.27      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar) |
| ResNeSt50              | 0.8083    | 0.9542    | 7.36             | 10.23            | 13.84          | 5.40    | 27.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) |
| RegNetX_4GF            | 0.785     | 0.9416    | 6.46             | 8.48             |      11.45     | 4.00        | 22.23      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar) |
C
cuicheng01 已提交
319

S
sibo2rr 已提交
320
<a name="12"></a>
C
cuicheng01 已提交
321

322
## 12. ViT_and_DeiT 系列 <sup>[[31](#ref31)][[32](#ref32)]</sup>
C
cuicheng01 已提交
323

S
sibo2rr 已提交
324
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)
C
cuicheng01 已提交
325

S
sibo2rr 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| ViT_small_<br/>patch16_224 | 0.7769  | 0.9342   | 3.71             | 9.05             | 16.72             |   9.41   | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_224 | 0.8195   | 0.9617   | 6.12             | 14.84            | 28.51             |  16.85   | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_384 | 0.8414  | 0.9717   | 14.15            | 48.38            | 95.06             |    49.35     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
| ViT_base_<br/>patch32_384 | 0.8176   | 0.9613   | 4.94             | 13.43            | 24.08             | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
| ViT_large_<br/>patch16_224 | 0.8323  | 0.9650   | 15.53            | 49.50            | 94.09             | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
|ViT_large_<br/>patch16_384| 0.8513 | 0.9736    | 39.51            | 152.46           | 304.06            | 174.70   | 304.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
|ViT_large_<br/>patch32_384| 0.8153 | 0.9608    | 11.44            | 36.09            | 70.63             | 44.24    | 306.48    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | 3.61        | 3.94            | 6.10            |   1.07   | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | 3.61 | 6.24            | 10.49           |  4.24   | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | 6.13             | 14.87            |      28.50      |    16.85     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | 14.12            | 48.80            | 97.60 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | 3.51             | 4.05             | 6.03 | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | 3.70             | 6.20             | 10.53 | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | 6.17             | 14.94            | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | 14.12            | 48.76            | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |
C
cuicheng01 已提交
346

S
sibo2rr 已提交
347
<a name="13"></a>
C
cuicheng01 已提交
348

349
## 13. RepVGG 系列 <sup>[[36](#ref36)]</sup>
C
cuicheng01 已提交
350

S
sibo2rr 已提交
351
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](../models/RepVGG.md)
C
cuicheng01 已提交
352

S
sibo2rr 已提交
353 354 355 356 357 358 359 360 361 362 363 364
| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0   | 0.7131    | 0.9016    |  |  |  | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) |
| RepVGG_A1   | 0.7380    | 0.9146    |  |  |  | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) |
| RepVGG_A2   | 0.7571    | 0.9264    |  |  |  | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) |
| RepVGG_B0   | 0.7450    | 0.9213    |  |  |  | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) |
| RepVGG_B1   | 0.7773    | 0.9385    |  |  |  | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) |
| RepVGG_B2   | 0.7813    | 0.9410    |  |  |  | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) |
| RepVGG_B1g2 | 0.7732    | 0.9359    |  |  |  | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) |
| RepVGG_B1g4 | 0.7675    | 0.9335    |  |  |  | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) |
| RepVGG_B2g4 | 0.7881    | 0.9448    |  |  |  | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
| RepVGG_B3g4 | 0.7965    | 0.9485    |  |  |  | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
C
cuicheng01 已提交
365

S
sibo2rr 已提交
366
<a name="14"></a>
C
cuicheng01 已提交
367

368
## 14. MixNet 系列 <sup>[[29](#ref29)]</sup>
S
sibo2rr 已提交
369 370

关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](../models/MixNet.md)
C
cuicheng01 已提交
371

S
sibo2rr 已提交
372
| 模型     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                           | inference模型下载地址                                        |
S
sibo2rr 已提交
373 374 375 376
| -------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MixNet_S | 0.7628    | 0.9299    | 2.31             | 3.63             | 5.20              | 252.977  | 4.167     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar) |
| MixNet_M | 0.7767    | 0.9364    | 2.84             | 4.60             | 6.62              | 357.119  | 5.065     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar) |
| MixNet_L | 0.7860    | 0.9437    | 3.16             | 5.55             | 8.03              | 579.017  | 7.384     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar) |
C
cuicheng01 已提交
377

S
sibo2rr 已提交
378 379
<a name="15"></a>

380
## 15. ReXNet 系列 <sup>[[30](#ref30)]</sup>
C
cuicheng01 已提交
381

S
sibo2rr 已提交
382
关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](../models/ReXNet.md)
C
cuicheng01 已提交
383

S
sibo2rr 已提交
384
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
385 386 387 388 389 390
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746    | 0.9370    | 3.08 | 4.15 | 5.49 | 0.415    | 4.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar) |
| ReXNet_1_3 | 0.7913    | 0.9464    | 3.54 | 4.87 | 6.54 | 0.68    | 7.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar) |
| ReXNet_1_5 | 0.8006    | 0.9512    | 3.68 | 5.31 | 7.38 | 0.90    | 9.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar) |
| ReXNet_2_0 | 0.8122    | 0.9536    | 4.30 | 6.54 | 9.19 | 1.56    | 16.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar) |
| ReXNet_3_0 | 0.8209    | 0.9612    | 5.74 | 9.49 | 13.62 | 3.44    | 34.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar) |
C
cuicheng01 已提交
391

S
sibo2rr 已提交
392 393
<a name="16"></a>

394
## 16. SwinTransformer 系列 <sup>[[27](#ref27)]</sup>
C
cuicheng01 已提交
395

S
sibo2rr 已提交
396
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)
C
cuicheng01 已提交
397

S
sibo2rr 已提交
398 399 400 401 402 403 404 405
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224    | 0.8069 | 0.9534 | 6.59 | 9.68 | 16.32 | 4.35  | 28.26   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
| SwinTransformer_small_patch4_window7_224   | 0.8275 | 0.9613 | 12.54 | 17.07 | 28.08 | 8.51  | 49.56   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window7_224    | 0.8300 | 0.9626 | 13.37 | 23.53 | 39.11 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384   | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup>     | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup>    | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
G
gaotingquan 已提交
406 407
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup>    | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar) |
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup>   | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar) |
C
cuicheng01 已提交
408

S
sibo2rr 已提交
409
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
C
cuicheng01 已提交
410

S
sibo2rr 已提交
411
<a name="17"></a>
C
cuicheng01 已提交
412

413
## 17. LeViT 系列 <sup>[[33](#ref33)]</sup>
S
sibo2rr 已提交
414 415

关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)
C
cuicheng01 已提交
416

S
sibo2rr 已提交
417 418
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
G
gaotingquan 已提交
419
| LeViT_128S | 0.7598    | 0.9269    |                  |                  |                  | 281    | 7.42     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128S_infer.tar) |
S
sibo2rr 已提交
420 421 422 423
| LeViT_128 | 0.7810    | 0.9371    |                  |                  |                  | 365    | 8.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) |
| LeViT_192 | 0.7934    | 0.9446    |                  |                  |                  | 597    | 10.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) |
| LeViT_256 | 0.8085    | 0.9497    |                  |                  |                  | 1049    | 18.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) |
| LeViT_384 | 0.8191   | 0.9551    |                  |                  |                  | 2234    | 38.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) |
C
cuicheng01 已提交
424

S
sibo2rr 已提交
425 426 427
**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。

<a name="18"></a>
C
cuicheng01 已提交
428

429
## 18. Twins 系列 <sup>[[34](#ref34)]</sup>
C
cuicheng01 已提交
430

S
sibo2rr 已提交
431
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)
C
cuicheng01 已提交
432

S
sibo2rr 已提交
433 434 435 436 437 438 439 440
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| pcpvt_small | 0.8082    | 0.9552    | 7.32 | 10.51 | 15.27 |3.67    | 24.06    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
| pcpvt_base | 0.8242    | 0.9619    | 12.20 | 16.22 | 23.16 | 6.44    | 43.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
| pcpvt_large | 0.8273    | 0.9650    | 16.47 | 22.90 | 32.73 | 9.50    | 60.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
| alt_gvt_small | 0.8140    | 0.9546    | 6.94 | 9.01 | 12.27 |2.81   | 24.06   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
| alt_gvt_base | 0.8294   | 0.9621    | 9.37 | 15.02 | 24.54 | 8.34   | 56.07   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
| alt_gvt_large | 0.8331   | 0.9642    | 11.76 | 22.08 | 35.12 | 14.81   | 99.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |
C
cuicheng01 已提交
441

S
sibo2rr 已提交
442
**注**:与 Reference 的精度差异源于数据预处理不同。
C
cuicheng01 已提交
443

S
sibo2rr 已提交
444
<a name="19"></a>
C
cuicheng01 已提交
445

446
## 19. HarDNet 系列 <sup>[[37](#ref37)]</sup>
S
sibo2rr 已提交
447 448

关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](../models/HarDNet.md)
C
cuicheng01 已提交
449

S
sibo2rr 已提交
450
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
451 452 453 454 455
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133    |0.8998    | 1.40 | 2.30 | 3.33 | 0.44   |  3.51    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar) |
| HarDNet68_ds |0.7362    | 0.9152   | 2.26 | 3.34 | 5.06 | 0.79   | 4.20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar) |
| HarDNet68| 0.7546   | 0.9265   | 3.58 | 8.53 | 11.58 | 4.26   | 17.58    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar) |
| HarDNet85 | 0.7744   | 0.9355   | 6.24 | 14.85 | 20.57 | 9.09   | 36.69  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar) |
C
cuicheng01 已提交
456

S
sibo2rr 已提交
457 458
<a name="20"></a>

459
## 20. DLA 系列 <sup>[[38](#ref38)]</sup>
C
cuicheng01 已提交
460

S
sibo2rr 已提交
461
关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](../models/DLA.md)
C
cuicheng01 已提交
462

S
sibo2rr 已提交
463
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
464 465 466 467 468 469 470 471 472 473
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| DLA102 | 0.7893    |0.9452    | 4.95 | 8.08 | 12.40 | 7.19   |  33.34    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar) |
| DLA102x2 |0.7885    | 0.9445  | 19.58 | 23.97 | 31.37 | 9.34   | 41.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar) |
| DLA102x| 0.781   | 0.9400   | 11.12 | 15.60 | 20.37 | 5.89  | 26.40    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar) |
| DLA169 | 0.7809  | 0.9409   | 7.70 | 12.25 | 18.90 | 11.59  | 53.50  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar) |
| DLA34 | 0.7603   | 0.9298    | 1.83 | 3.37 | 5.98 | 3.07   |  15.76    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar) |
| DLA46_c |0.6321   | 0.853   | 1.06 | 2.08 | 3.23 | 0.54   | 1.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar) |
| DLA60 | 0.7610   | 0.9292   | 2.78 | 5.36 | 8.29 | 4.26   | 22.08    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar) |
| DLA60x_c | 0.6645   | 0.8754   | 1.79 | 3.68 | 5.19 | 0.59   | 1.33  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar) |
| DLA60x | 0.7753  | 0.9378  | 5.98 | 9.24 | 12.52 | 3.54   | 17.41  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar) |
C
cuicheng01 已提交
474

S
sibo2rr 已提交
475
<a name="21"></a>
C
cuicheng01 已提交
476

477
## 21. RedNet 系列 <sup>[[39](#ref39)]</sup>
S
sibo2rr 已提交
478 479

关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](../models/RedNet.md)
C
cuicheng01 已提交
480

S
sibo2rr 已提交
481
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
482 483 484 485 486 487
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| RedNet26 | 0.7595   |0.9319  | 4.45 | 15.16 | 29.03 | 1.69   |  9.26    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar) |
| RedNet38 |0.7747  | 0.9356  | 6.24 | 21.39 | 41.26 | 2.14   | 12.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar) |
| RedNet50| 0.7833  | 0.9417   | 8.04 | 27.71 | 53.73 | 2.61   | 15.60    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar) |
| RedNet101 | 0.7894  | 0.9436   | 13.07 | 44.12 | 83.28 | 4.59  | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar) |
| RedNet152 | 0.7917  | 0.9440   | 18.66 | 63.27 | 119.48 | 6.57  | 34.14  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar) |
C
cuicheng01 已提交
488

S
sibo2rr 已提交
489 490
<a name="22"></a>

491
## 22. TNT 系列 <sup>[[35](#ref35)]</sup>
C
cuicheng01 已提交
492

S
sibo2rr 已提交
493
关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)
C
cuicheng01 已提交
494

S
sibo2rr 已提交
495 496 497
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| TNT_small | 0.8121   |0.9563  |                  |                  | 4.83   |  23.68    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar) |
C
cuicheng01 已提交
498

499
**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean``std` 均为 0.5。
S
sibo2rr 已提交
500 501

<a name="23"></a>
C
cuicheng01 已提交
502

S
sibo2rr 已提交
503
## 23. 其他模型
C
cuicheng01 已提交
504

505
关于 AlexNet <sup>[[18](#ref18)]</sup>、SqueezeNet 系列 <sup>[[19](#ref19)]</sup>、VGG 系列 <sup>[[20](#ref20)]</sup>、DarkNet53 <sup>[[21](#ref21)]</sup> 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](../models/Others.md)
C
cuicheng01 已提交
506

S
sibo2rr 已提交
507
| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
508 509 510 511 512 513 514 515 516
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| AlexNet       | 0.567 | 0.792 | 0.81 | 1.50             | 2.33 | 0.71 | 61.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar) |
| SqueezeNet1_0 | 0.596 | 0.817 | 0.68             | 1.64             | 2.62    | 0.78 | 1.25 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar) |
| SqueezeNet1_1 | 0.601 | 0.819 | 0.62             | 1.30             | 2.09 | 0.35   | 1.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar) |
| VGG11 | 0.693 | 0.891 | 1.72             | 4.15             | 7.24 | 7.61 | 132.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar) |
| VGG13 | 0.700 | 0.894 | 2.02             | 5.28             | 9.54 | 11.31 | 133.05 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar) |
| VGG16 | 0.720 | 0.907 | 2.48             | 6.79             | 12.33 | 15.470 | 138.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar) |
| VGG19 | 0.726 | 0.909 | 2.93             | 8.28             | 15.21 | 19.63 | 143.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar) |
| DarkNet53 | 0.780 | 0.941 | 2.79 | 6.42 | 10.89 | 9.31 | 41.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar) |
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

<a name='reference'></a>

## 参考文献

<a name="ref1">[1]</a> He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

<a name="ref2">[2]</a> He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567.

<a name="ref3">[3]</a> Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324.

<a name="ref4">[4]</a> Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.

<a name="ref5">[5]</a> Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

<a name="ref6">[6]</a> Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.

<a name="ref7">[7]</a> Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.

<a name="ref8">[8]</a> Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

<a name="ref9">[9]</a> Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.

<a name="ref10">[10]</a> Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

<a name="ref11">[11]</a> Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017.

<a name="ref12">[12]</a> Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.

<a name="ref13">[13]</a> Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019.

<a name="ref14">[14]</a> Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475.

<a name="ref15">[15]</a> Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.

<a name="ref16">[16]</a> Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.

<a name="ref17">[17]</a> Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196.

<a name="ref18">[18]</a> Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

<a name="ref19">[19]</a> Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

<a name="ref20">[20]</a> Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

<a name="ref21">[21]</a> Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.

<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.

<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.

<a name="ref25">[25]</a> Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436.

<a name="ref26">[26]</a> C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

<a name="ref27">[27]</a> Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.

<a name="ref28">[28]</a>Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du, Ruoyu Guo, Shuilong Dong, Bin Lu, Ying Zhou, Xueying Lv, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LCNet: A Lightweight CPU Convolutional Neural Network.

<a name="ref29">[29]</a>Mingxing Tan, Quoc V. Le. MixConv: Mixed Depthwise Convolutional Kernels.

<a name="ref30">[30]</a>Dongyoon Han, Sangdoo Yun, Byeongho Heo, YoungJoon Yoo. Rethinking Channel Dimensions for Efficient Model Design.

<a name="ref31">[31]</a>Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.

<a name="ref32">[32]</a>Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Herve Jegou. Training data-efficient image transformers & distillation through attention.

<a name="ref33">[33]</a>Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herve Jegou, Matthijs Douze. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference.

<a name="ref34">[34]</a>Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, Chunhua Shen. Twins: Revisiting the Design of Spatial Attention in Vision Transformers.

<a name="ref35">[35]</a>Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer.

<a name="ref36">[36]</a>Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, Jian Sun. RepVGG: Making VGG-style ConvNets Great Again.

<a name="ref37">[37]</a>Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin. HarDNet: A Low Memory Traffic Network.

<a name="ref38">[38]</a>Fisher Yu, Dequan Wang, Evan Shelhamer, Trevor Darrell. Deep Layer Aggregation.

<a name="ref39">[39]</a>Duo Lim Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, Qifeng Chen. Involution: Inverting the Inherence of Convolution for Visual Recognition.