Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
4619d632
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4619d632
编写于
2月 25, 2022
作者:
G
gaotingquan
提交者:
Tingquan Gao
2月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix: fix the download link, etc.
fix the pretrained and inference download link; add use_ssld arg to TNT model.
上级
4b711d33
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
7 addition
and
6 deletion
+7
-6
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+4
-4
ppcls/arch/backbone/model_zoo/tnt.py
ppcls/arch/backbone/model_zoo/tnt.py
+3
-2
未找到文件。
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
4619d632
...
...
@@ -65,7 +65,7 @@
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 |
<span
style=
"white-space:nowrap;"
>
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
  
</span>
|
<span
style=
"white-space:nowrap;"
>
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld.tar
)
  
</span>
|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 |
<span
style=
"white-space:nowrap;"
>
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
  
</span>
|
<span
style=
"white-space:nowrap;"
>
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld
_infer
.tar
)
  
</span>
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 3.59 | 6.35 | 9.50 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar
)
|
...
...
@@ -414,8 +414,8 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_
22kto1k_
infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_
22kto1k_
infer.tar
)
|
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
...
...
@@ -427,7 +427,7 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar
)
|
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/
L
eViT_128S_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.9371 | | | | 365 | 8.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar
)
|
...
...
ppcls/arch/backbone/model_zoo/tnt.py
浏览文件 @
4619d632
...
...
@@ -372,7 +372,7 @@ def _load_pretrained(pretrained, model, model_url, use_ssld=False):
)
def
TNT_small
(
pretrained
=
False
,
**
kwargs
):
def
TNT_small
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
TNT
(
patch_size
=
16
,
embed_dim
=
384
,
in_dim
=
24
,
...
...
@@ -381,5 +381,6 @@ def TNT_small(pretrained=False, **kwargs):
in_num_head
=
4
,
qkv_bias
=
False
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"TNT_small"
])
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"TNT_small"
],
use_ssld
=
use_ssld
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录