res2net.py 8.7 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
26 27

__all__ = [
28 29 30
    "Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s",
    "Res2Net50_48w_2s", "Res2Net50_26w_6s", "Res2Net50_26w_8s",
    "Res2Net101_26w_4s", "Res2Net152_26w_4s", "Res2Net200_26w_4s"
W
WuHaobo 已提交
31 32 33
]


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels1,
                 num_channels2,
                 num_filters,
                 stride,
                 scales,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.stride = stride
        self.scales = scales
        self.conv0 = ConvBNLayer(
            num_channels=num_channels1,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        self.conv1_list = []
        for s in range(scales - 1):
            conv1 = self.add_sublayer(
                name + '_branch2b_' + str(s + 1),
                ConvBNLayer(
                    num_channels=num_filters // scales,
                    num_filters=num_filters // scales,
                    filter_size=3,
                    stride=stride,
                    act='relu',
                    name=name + '_branch2b_' + str(s + 1)))
            self.conv1_list.append(conv1)
        self.pool2d_avg = Pool2D(
            pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')

        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_channels2,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels1,
                num_filters=num_channels2,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        xs = fluid.layers.split(y, self.scales, 1)
        ys = []
        for s, conv1 in enumerate(self.conv1_list):
            if s == 0 or self.stride == 2:
                ys.append(conv1(xs[s]))
            else:
                ys.append(conv1(xs[s] + ys[-1]))
        if self.stride == 1:
            ys.append(xs[-1])
        else:
            ys.append(self.pool2d_avg(xs[-1]))
        conv1 = fluid.layers.concat(ys, axis=1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146
        y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
        return y
147 148 149 150 151 152


class Res2Net(fluid.dygraph.Layer):
    def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
        super(Res2Net, self).__init__()

W
WuHaobo 已提交
153 154 155 156
        self.layers = layers
        self.scales = scales
        self.width = width
        basic_width = self.width * self.scales
157 158 159 160
        supported_layers = [50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
161 162 163 164 165 166 167

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
168 169 170 171 172 173 174 175
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512, 1024]
        num_channels2 = [256, 512, 1024, 2048]
        num_filters = [basic_width * t for t in [1, 2, 4, 8]]

        self.conv1 = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
176 177 178 179 180
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
            name="conv1")
181 182
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
183

184
        self.block_list = []
W
WuHaobo 已提交
185
        for block in range(len(depth)):
186
            shortcut = False
W
WuHaobo 已提交
187 188 189 190 191 192 193 194
            for i in range(depth[block]):
                if layers in [101, 152] and block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels1=num_channels[block]
                        if i == 0 else num_channels2[block],
                        num_channels2=num_channels2[block],
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        scales=scales,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
W
WuHaobo 已提交
221
                initializer=fluid.initializer.Uniform(-stdv, stdv),
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        y = self.conv1(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def Res2Net50_48w_2s(**args):
    model = Res2Net(layers=50, scales=2, width=48, **args)
    return model
W
WuHaobo 已提交
239 240


241 242 243
def Res2Net50_26w_4s(**args):
    model = Res2Net(layers=50, scales=4, width=26, **args)
    return model
W
WuHaobo 已提交
244 245


246 247
def Res2Net50_14w_8s(**args):
    model = Res2Net(layers=50, scales=8, width=14, **args)
W
WuHaobo 已提交
248 249 250
    return model


251 252
def Res2Net50_48w_2s(**args):
    model = Res2Net(layers=50, scales=2, width=48, **args)
W
WuHaobo 已提交
253 254 255
    return model


256 257
def Res2Net50_26w_6s(**args):
    model = Res2Net(layers=50, scales=6, width=26, **args)
W
WuHaobo 已提交
258 259 260
    return model


261 262
def Res2Net50_26w_8s(**args):
    model = Res2Net(layers=50, scales=8, width=26, **args)
W
WuHaobo 已提交
263 264 265
    return model


266 267
def Res2Net101_26w_4s(**args):
    model = Res2Net(layers=101, scales=4, width=26, **args)
W
WuHaobo 已提交
268 269 270
    return model


271 272
def Res2Net152_26w_4s(**args):
    model = Res2Net(layers=152, scales=4, width=26, **args)
W
WuHaobo 已提交
273 274 275
    return model


276 277
def Res2Net200_26w_4s(**args):
    model = Res2Net(layers=200, scales=4, width=26, **args)
W
WuHaobo 已提交
278
    return model