res2net.py 8.8 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
27 28

__all__ = [
29 30 31
    "Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s",
    "Res2Net50_48w_2s", "Res2Net50_26w_6s", "Res2Net50_26w_8s",
    "Res2Net101_26w_4s", "Res2Net152_26w_4s", "Res2Net200_26w_4s"
W
WuHaobo 已提交
32 33 34
]


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels1,
                 num_channels2,
                 num_filters,
                 stride,
                 scales,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.stride = stride
        self.scales = scales
        self.conv0 = ConvBNLayer(
            num_channels=num_channels1,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        self.conv1_list = []
        for s in range(scales - 1):
            conv1 = self.add_sublayer(
                name + '_branch2b_' + str(s + 1),
                ConvBNLayer(
                    num_channels=num_filters // scales,
                    num_filters=num_filters // scales,
                    filter_size=3,
                    stride=stride,
                    act='relu',
                    name=name + '_branch2b_' + str(s + 1)))
            self.conv1_list.append(conv1)
        self.pool2d_avg = Pool2D(
            pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')

        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_channels2,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels1,
                num_filters=num_channels2,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        xs = fluid.layers.split(y, self.scales, 1)
        ys = []
        for s, conv1 in enumerate(self.conv1_list):
            if s == 0 or self.stride == 2:
                ys.append(conv1(xs[s]))
            else:
                ys.append(conv1(xs[s] + ys[-1]))
        if self.stride == 1:
            ys.append(xs[-1])
        else:
            ys.append(self.pool2d_avg(xs[-1]))
        conv1 = fluid.layers.concat(ys, axis=1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv2)
        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class Res2Net(fluid.dygraph.Layer):
    def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
        super(Res2Net, self).__init__()

W
WuHaobo 已提交
155 156 157 158
        self.layers = layers
        self.scales = scales
        self.width = width
        basic_width = self.width * self.scales
159 160 161 162
        supported_layers = [50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
163 164 165 166 167 168 169

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
170 171 172 173 174 175 176 177
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512, 1024]
        num_channels2 = [256, 512, 1024, 2048]
        num_filters = [basic_width * t for t in [1, 2, 4, 8]]

        self.conv1 = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
178 179 180 181 182
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
            name="conv1")
183 184
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
185

186
        self.block_list = []
W
WuHaobo 已提交
187
        for block in range(len(depth)):
188
            shortcut = False
W
WuHaobo 已提交
189 190 191 192 193 194 195 196
            for i in range(depth[block]):
                if layers in [101, 152] and block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels1=num_channels[block]
                        if i == 0 else num_channels2[block],
                        num_channels2=num_channels2[block],
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        scales=scales,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
W
WuHaobo 已提交
223
                initializer=fluid.initializer.Uniform(-stdv, stdv),
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        y = self.conv1(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def Res2Net50_48w_2s(**args):
    model = Res2Net(layers=50, scales=2, width=48, **args)
    return model
W
WuHaobo 已提交
241 242


243 244 245
def Res2Net50_26w_4s(**args):
    model = Res2Net(layers=50, scales=4, width=26, **args)
    return model
W
WuHaobo 已提交
246 247


248 249
def Res2Net50_14w_8s(**args):
    model = Res2Net(layers=50, scales=8, width=14, **args)
W
WuHaobo 已提交
250 251 252
    return model


253 254
def Res2Net50_48w_2s(**args):
    model = Res2Net(layers=50, scales=2, width=48, **args)
W
WuHaobo 已提交
255 256 257
    return model


258 259
def Res2Net50_26w_6s(**args):
    model = Res2Net(layers=50, scales=6, width=26, **args)
W
WuHaobo 已提交
260 261 262
    return model


263 264
def Res2Net50_26w_8s(**args):
    model = Res2Net(layers=50, scales=8, width=26, **args)
W
WuHaobo 已提交
265 266 267
    return model


268 269
def Res2Net101_26w_4s(**args):
    model = Res2Net(layers=101, scales=4, width=26, **args)
W
WuHaobo 已提交
270 271 272
    return model


273 274
def Res2Net152_26w_4s(**args):
    model = Res2Net(layers=152, scales=4, width=26, **args)
W
WuHaobo 已提交
275 276 277
    return model


278 279
def Res2Net200_26w_4s(**args):
    model = Res2Net(layers=200, scales=4, width=26, **args)
W
WuHaobo 已提交
280
    return model