engine.py 13.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24 25 26 27

from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
W
dbg  
weishengyu 已提交
28
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
29 30 31 32 33
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
34
from .train import build_train_func
35
from .evaluation import build_eval_func
D
dongshuilong 已提交
36
from ppcls.engine import evaluation
D
dongshuilong 已提交
37 38 39
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
40
class Engine(object):
D
dongshuilong 已提交
41
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
42
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
43 44
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
45

D
dongshuilong 已提交
46
        # set seed
G
gaotingquan 已提交
47
        self._init_seed()
D
dongshuilong 已提交
48

D
dongshuilong 已提交
49
        # init logger
50 51
        log_file = os.path.join(self.config['Global']['output_dir'],
                                self.config["Arch"]["name"], f"{mode}.log")
G
gaotingquan 已提交
52
        init_logger(log_file=log_file)
D
dongshuilong 已提交
53 54

        # set device
55
        self._init_device()
D
dongshuilong 已提交
56 57

        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
58
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
59

D
dongshuilong 已提交
60
        # load_pretrain
G
gaotingquan 已提交
61
        self._init_pretrained()
D
dongshuilong 已提交
62

63 64 65 66 67
        # init train_func and eval_func
        self.eval = build_eval_func(
            self.config, mode=self.mode, model=self.model)
        self.train = build_train_func(
            self.config, mode=self.mode, model=self.model, eval_func=self.eval)
68 69

        # for distributed
G
gaotingquan 已提交
70
        self._init_dist()
D
dongshuilong 已提交
71

72 73
        print_config(config)

D
dongshuilong 已提交
74 75 76
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
77 78 79 80 81 82

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

83 84
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
G
gaotingquan 已提交
102 103 104 105 106 107 108 109 110 111 112

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)

D
dongshuilong 已提交
113 114
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
115 116
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
117 118 119
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
120
                    out = out["output"]
D
dongshuilong 已提交
121 122 123 124 125 126 127
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
128 129
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
130
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
131
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
132 133 134 135 136 137 138 139 140
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
141 142

        model.eval()
G
gaotingquan 已提交
143

144
        # for re-parameterization nets
H
HydrogenSulfate 已提交
145
        for layer in self.model.sublayers():
146 147 148
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
149

D
dongshuilong 已提交
150 151
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
152 153 154 155 156 157 158 159 160 161 162 163

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
164 165
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
166 167 168
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
169

G
gaotingquan 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
198
        paddle.set_device(device)
G
gaotingquan 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                self.amp_level = "O1"

            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
                    True) and self.amp_level == "O2" and self.amp_eval == False:
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
                self.amp_eval = True

            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
249 250 251 252 253 254 255 256 257 258
            if paddle_version not in ["2.3", "2.4", "0.0"]:
                msg = "When using AMP, PaddleClas release/2.6 and later version only support PaddlePaddle version >= 2.3.0."
                logger.error(msg)
                raise Exception(msg)

            if self.mode == "train" or self.amp_eval:
                self.model = paddle.amp.decorate(
                    models=self.model,
                    level=self.amp_level,
                    save_dtype='float32')
G
gaotingquan 已提交
259 260 261 262 263 264 265 266

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')

G
gaotingquan 已提交
267 268
            self.amp_level = engine.config["AMP"].get("level", "O1").upper()

G
gaotingquan 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
            if self.mode == 'train' and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)

D
dongshuilong 已提交
290

W
dbg  
weishengyu 已提交
291
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
292 293 294 295
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
296
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
297 298 299 300 301 302 303 304 305 306 307 308
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
309 310
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
311
        else:
C
cuicheng01 已提交
312 313 314 315
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
331
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
332 333
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
334
            x = self.out_act(x)
D
dongshuilong 已提交
335
        return x