resnext.py 10.4 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/abs/1611.05431

W
WuHaobo 已提交
17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
W
WuHaobo 已提交
22
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
from paddle import ParamAttr
import paddle.nn as nn
25 26 27
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
28
from paddle.nn.initializer import Uniform
29 30

import math
W
WuHaobo 已提交
31

R
root 已提交
32
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
33 34

MODEL_URLS = {
littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
    "ResNeXt50_32x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams",
    "ResNeXt50_64x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams",
    "ResNeXt101_32x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams",
    "ResNeXt101_64x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams",
    "ResNeXt152_32x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams",
    "ResNeXt152_64x4d":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams",
}
C
cuicheng01 已提交
48 49

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
50 51


littletomatodonkey's avatar
littletomatodonkey 已提交
52
class ConvBNLayer(nn.Layer):
53 54 55 56 57 58 59
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
60 61
                 name=None,
                 data_format="NCHW"):
62
        super(ConvBNLayer, self).__init__()
63
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
64 65 66
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
67 68 69
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
70
            weight_attr=ParamAttr(name=name + "_weights"),
71 72
            bias_attr=False,
            data_format=data_format)
W
WuHaobo 已提交
73 74 75 76
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
77 78
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
79 80 81 82
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
83 84
            moving_variance_name=bn_name + '_variance',
            data_layout=data_format)
85 86 87 88 89 90 91

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
92
class BottleneckBlock(nn.Layer):
93 94 95 96 97 98
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 shortcut=True,
99 100
                 name=None,
                 data_format="NCHW"):
101 102 103
        super(BottleneckBlock, self).__init__()
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
104 105 106
            num_filters=num_filters,
            filter_size=1,
            act='relu',
107 108
            name=name + "_branch2a",
            data_format=data_format)
109 110
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
111 112 113
            num_filters=num_filters,
            filter_size=3,
            groups=cardinality,
114
            stride=stride,
W
WuHaobo 已提交
115
            act='relu',
116 117
            name=name + "_branch2b",
            data_format=data_format)
118 119 120
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2 if cardinality == 32 else num_filters,
W
WuHaobo 已提交
121 122
            filter_size=1,
            act=None,
123 124
            name=name + "_branch2c",
            data_format=data_format)
W
WuHaobo 已提交
125

126 127 128 129 130 131 132
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 2
                if cardinality == 32 else num_filters,
                filter_size=1,
                stride=stride,
133 134
                name=name + "_branch1",
                data_format=data_format)
135 136 137 138 139 140 141 142 143 144 145 146 147

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

148 149
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
150
        return y
151

W
WuHaobo 已提交
152

littletomatodonkey's avatar
littletomatodonkey 已提交
153
class ResNeXt(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
154 155 156 157 158 159
    def __init__(self,
                 layers=50,
                 class_num=1000,
                 cardinality=32,
                 input_image_channel=3,
                 data_format="NCHW"):
160 161 162
        super(ResNeXt, self).__init__()

        self.layers = layers
163 164
        self.data_format = data_format
        self.input_image_channel = input_image_channel
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        self.cardinality = cardinality
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
        supported_cardinality = [32, 64]
        assert cardinality in supported_cardinality, \
            "supported cardinality is {} but input cardinality is {}" \
            .format(supported_cardinality, cardinality)
        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [128, 256, 512,
                       1024] if cardinality == 32 else [256, 512, 1024, 2048]
W
WuHaobo 已提交
183

184
        self.conv = ConvBNLayer(
185
            num_channels=self.input_image_channel,
186 187 188 189
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
190 191
            name="res_conv1",
            data_format=self.data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
192 193
        self.pool2d_max = MaxPool2D(
            kernel_size=3, stride=2, padding=1, data_format=self.data_format)
W
WuHaobo 已提交
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        self.block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if layers in [101, 152] and block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels[block] if i == 0 else
                        num_filters[block] * int(64 // self.cardinality),
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=self.cardinality,
                        shortcut=shortcut,
215 216
                        name=conv_name,
                        data_format=self.data_format))
217 218 219
                self.block_list.append(bottleneck_block)
                shortcut = True

220
        self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
221 222 223 224 225 226 227

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
228
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
229 230
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
231 232 233
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
234 235 236 237 238 239 240 241 242 243 244 245
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
                inputs.stop_gradient = True
            y = self.conv(inputs)
            y = self.pool2d_max(y)
            for block in self.block_list:
                y = block(y)
            y = self.pool2d_avg(y)
            y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
            y = self.out(y)
            return y
246

littletomatodonkey's avatar
littletomatodonkey 已提交
247

C
cuicheng01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNeXt50_32x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=50, cardinality=32, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
263 264
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt50_32x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
265 266 267
    return model


C
cuicheng01 已提交
268 269
def ResNeXt50_64x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=50, cardinality=64, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt50_64x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
272 273 274
    return model


C
cuicheng01 已提交
275 276
def ResNeXt101_32x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=101, cardinality=32, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
277 278
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt101_32x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
279 280 281
    return model


C
cuicheng01 已提交
282 283
def ResNeXt101_64x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=101, cardinality=64, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
284 285
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt101_64x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
286 287 288
    return model


C
cuicheng01 已提交
289 290
def ResNeXt152_32x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=152, cardinality=32, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
291 292
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt152_32x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
293 294 295
    return model


C
cuicheng01 已提交
296 297
def ResNeXt152_64x4d(pretrained=False, use_ssld=False, **kwargs):
    model = ResNeXt(layers=152, cardinality=64, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
298 299
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNeXt152_64x4d"], use_ssld=use_ssld)
W
WuHaobo 已提交
300
    return model