# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/1611.05431 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "ResNeXt50_32x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams", "ResNeXt50_64x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams", "ResNeXt101_32x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams", "ResNeXt101_64x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams", "ResNeXt152_32x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams", "ResNeXt152_64x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, act=None, name=None, data_format="NCHW"): super(ConvBNLayer, self).__init__() self._conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False, data_format=data_format) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', data_layout=data_format) def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, cardinality, shortcut=True, name=None, data_format="NCHW"): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a", data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, groups=cardinality, stride=stride, act='relu', name=name + "_branch2b", data_format=data_format) self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, act=None, name=name + "_branch2c", data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, stride=stride, name=name + "_branch1", data_format=data_format) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv2) y = F.relu(y) return y class ResNeXt(nn.Layer): def __init__(self, layers=50, class_num=1000, cardinality=32, input_image_channel=3, data_format="NCHW"): super(ResNeXt, self).__init__() self.layers = layers self.data_format = data_format self.input_image_channel = input_image_channel self.cardinality = cardinality supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) supported_cardinality = [32, 64] assert cardinality in supported_cardinality, \ "supported cardinality is {} but input cardinality is {}" \ .format(supported_cardinality, cardinality) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_channels = [64, 256, 512, 1024] num_filters = [128, 256, 512, 1024] if cardinality == 32 else [256, 512, 1024, 2048] self.conv = ConvBNLayer( num_channels=self.input_image_channel, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1", data_format=self.data_format) self.pool2d_max = MaxPool2D( kernel_size=3, stride=2, padding=1, data_format=self.data_format) self.block_list = [] for block in range(len(depth)): shortcut = False for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * int(64 // self.cardinality), num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=self.cardinality, shortcut=shortcut, name=conv_name, data_format=self.data_format)) self.block_list.append(bottleneck_block) shortcut = True self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_num, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name="fc_weights"), bias_attr=ParamAttr(name="fc_offset")) def forward(self, inputs): with paddle.static.amp.fp16_guard(): if self.data_format == "NHWC": inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1]) inputs.stop_gradient = True y = self.conv(inputs) y = self.pool2d_max(y) for block in self.block_list: y = block(y) y = self.pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def ResNeXt50_32x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=50, cardinality=32, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt50_32x4d"], use_ssld=use_ssld) return model def ResNeXt50_64x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=50, cardinality=64, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt50_64x4d"], use_ssld=use_ssld) return model def ResNeXt101_32x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=101, cardinality=32, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt101_32x4d"], use_ssld=use_ssld) return model def ResNeXt101_64x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=101, cardinality=64, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt101_64x4d"], use_ssld=use_ssld) return model def ResNeXt152_32x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=152, cardinality=32, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt152_32x4d"], use_ssld=use_ssld) return model def ResNeXt152_64x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=152, cardinality=64, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["ResNeXt152_64x4d"], use_ssld=use_ssld) return model