inception_v3.py 17.3 KB
Newer Older
F
Felix 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/abs/1512.00567v3

F
Felix 已提交
17
from __future__ import absolute_import, division, print_function
D
dongshuilong 已提交
18
import math
F
Felix 已提交
19 20 21 22 23 24 25
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

R
root 已提交
26 27
from ..base.theseus_layer import TheseusLayer
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
F
Felix 已提交
28

F
Felix 已提交
29
MODEL_URLS = {
D
dongshuilong 已提交
30 31
    "InceptionV3":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams"
F
Felix 已提交
32 33
}

34 35 36 37 38 39 40 41
MODEL_STAGES_PATTERN = {
    "InceptionV3": [
        "inception_block_list[2]", "inception_block_list[3]",
        "inception_block_list[7]", "inception_block_list[8]",
        "inception_block_list[10]"
    ]
}

F
Felix 已提交
42 43 44 45 46 47
__all__ = MODEL_URLS.keys()
'''
InceptionV3 config: dict.
    key: inception blocks of InceptionV3.
    values: conv num in different blocks.
'''
F
Felix 已提交
48
NET_CONFIG = {
D
dongshuilong 已提交
49 50 51 52 53
    "inception_a": [[192, 256, 288], [32, 64, 64]],
    "inception_b": [288],
    "inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
    "inception_d": [768],
    "inception_e": [1280, 2048]
F
Felix 已提交
54 55
}

D
dongshuilong 已提交
56

F
Felix 已提交
57 58 59 60 61 62 63 64
class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
F
Felix 已提交
65
                 act="relu"):
D
dongshuilong 已提交
66
        super().__init__()
F
Felix 已提交
67
        self.act = act
F
Felix 已提交
68 69 70 71 72 73 74 75
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
D
dongshuilong 已提交
76
        self.bn = BatchNorm(num_filters)
F
Felix 已提交
77
        self.relu = nn.ReLU()
F
Felix 已提交
78

F
Felix 已提交
79 80
    def forward(self, x):
        x = self.conv(x)
D
dongshuilong 已提交
81
        x = self.bn(x)
F
Felix 已提交
82 83 84
        if self.act:
            x = self.relu(x)
        return x
F
Felix 已提交
85

D
dongshuilong 已提交
86

F
Felix 已提交
87 88
class InceptionStem(TheseusLayer):
    def __init__(self):
D
dongshuilong 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        super().__init__()
        self.conv_1a_3x3 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act="relu")
        self.conv_2a_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act="relu")
        self.conv_2b_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            padding=1,
            act="relu")

        self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
        self.conv_3b_1x1 = ConvBNLayer(
            num_channels=64, num_filters=80, filter_size=1, act="relu")
        self.conv_4a_3x3 = ConvBNLayer(
            num_channels=80, num_filters=192, filter_size=3, act="relu")

F
Felix 已提交
115
    def forward(self, x):
F
Felix 已提交
116 117 118
        x = self.conv_1a_3x3(x)
        x = self.conv_2a_3x3(x)
        x = self.conv_2b_3x3(x)
D
dongshuilong 已提交
119
        x = self.max_pool(x)
F
Felix 已提交
120 121
        x = self.conv_3b_1x1(x)
        x = self.conv_4a_3x3(x)
D
dongshuilong 已提交
122
        x = self.max_pool(x)
F
Felix 已提交
123
        return x
F
Felix 已提交
124

D
dongshuilong 已提交
125

F
Felix 已提交
126
class InceptionA(TheseusLayer):
F
Felix 已提交
127
    def __init__(self, num_channels, pool_features):
D
dongshuilong 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch5x5_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=48,
            filter_size=1,
            act="relu")
        self.branch5x5_2 = ConvBNLayer(
            num_channels=48,
            num_filters=64,
            filter_size=5,
            padding=2,
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=pool_features,
            filter_size=1,
            act="relu")
F
Felix 已提交
170 171 172 173 174 175 176 177 178 179 180 181

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)
D
dongshuilong 已提交
182 183
        x = paddle.concat(
            [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
184
        return x
F
Felix 已提交
185

D
dongshuilong 已提交
186

F
Felix 已提交
187
class InceptionB(TheseusLayer):
F
Felix 已提交
188
    def __init__(self, num_channels):
D
dongshuilong 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        super().__init__()
        self.branch3x3 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
213
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
D
dongshuilong 已提交
214

F
Felix 已提交
215 216 217 218 219 220 221 222 223
    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

F
Felix 已提交
224
        x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
225

F
Felix 已提交
226
        return x
F
Felix 已提交
227

D
dongshuilong 已提交
228

F
Felix 已提交
229
class InceptionC(TheseusLayer):
F
Felix 已提交
230
    def __init__(self, num_channels, channels_7x7):
D
dongshuilong 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

        self.branch7x7_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            stride=1,
            act="relu")
        self.branch7x7_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            stride=1,
            padding=(0, 3),
            act="relu")
        self.branch7x7_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(7, 1),
            stride=1,
            padding=(3, 0),
            act="relu")

        self.branch7x7dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            act="relu")
        self.branch7x7dbl_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7dbl_4 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_5 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")

        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
313 314 315
        x = paddle.concat(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)

F
Felix 已提交
316
        return x
D
dongshuilong 已提交
317 318


F
Felix 已提交
319
class InceptionD(TheseusLayer):
F
Felix 已提交
320
    def __init__(self, num_channels):
D
dongshuilong 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        super().__init__()
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch3x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=320,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch7x7x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch7x7x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7x3_3 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7x3_4 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
356 357 358 359 360 361 362 363 364 365 366 367
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = self.branch_pool(x)
D
dongshuilong 已提交
368

F
Felix 已提交
369 370
        x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
        return x
D
dongshuilong 已提交
371 372


F
Felix 已提交
373
class InceptionE(TheseusLayer):
F
Felix 已提交
374
    def __init__(self, num_channels):
D
dongshuilong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=320,
            filter_size=1,
            act="relu")
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=1,
            act="relu")
        self.branch3x3_2a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3_2b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=448,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=448,
            num_filters=384,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3dbl_3b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = paddle.concat(branch3x3, axis=1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
451 452 453
        x = paddle.concat(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
        return x
F
Felix 已提交
454 455 456


class Inception_V3(TheseusLayer):
F
Felix 已提交
457 458 459 460 461 462 463 464 465
    """
    Inception_V3
    Args:
        config: dict. config of Inception_V3.
        class_num: int=1000. The number of classes.
        pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
    Returns:
        model: nn.Layer. Specific Inception_V3 model depends on args.
    """
D
dongshuilong 已提交
466

467 468 469 470 471
    def __init__(self,
                 config,
                 stages_pattern,
                 class_num=1000,
                 return_patterns=None,
G
gaotingquan 已提交
472
                 return_stages=None):
D
dongshuilong 已提交
473 474 475 476 477 478 479
        super().__init__()

        self.inception_a_list = config["inception_a"]
        self.inception_c_list = config["inception_c"]
        self.inception_b_list = config["inception_b"]
        self.inception_d_list = config["inception_d"]
        self.inception_e_list = config["inception_e"]
F
Felix 已提交
480

F
Felix 已提交
481 482
        self.inception_stem = InceptionStem()

F
Felix 已提交
483
        self.inception_block_list = nn.LayerList()
F
Felix 已提交
484
        for i in range(len(self.inception_a_list[0])):
D
dongshuilong 已提交
485
            inception_a = InceptionA(self.inception_a_list[0][i],
F
Felix 已提交
486
                                     self.inception_a_list[1][i])
F
Felix 已提交
487 488 489
            self.inception_block_list.append(inception_a)

        for i in range(len(self.inception_b_list)):
F
Felix 已提交
490
            inception_b = InceptionB(self.inception_b_list[i])
F
Felix 已提交
491 492 493
            self.inception_block_list.append(inception_b)

        for i in range(len(self.inception_c_list[0])):
D
dongshuilong 已提交
494
            inception_c = InceptionC(self.inception_c_list[0][i],
F
Felix 已提交
495
                                     self.inception_c_list[1][i])
F
Felix 已提交
496 497 498
            self.inception_block_list.append(inception_c)

        for i in range(len(self.inception_d_list)):
F
Felix 已提交
499
            inception_d = InceptionD(self.inception_d_list[i])
F
Felix 已提交
500 501 502
            self.inception_block_list.append(inception_d)

        for i in range(len(self.inception_e_list)):
F
Felix 已提交
503
            inception_e = InceptionE(self.inception_e_list[i])
F
Felix 已提交
504
            self.inception_block_list.append(inception_e)
D
dongshuilong 已提交
505

F
Felix 已提交
506 507
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
F
Felix 已提交
508
        stdv = 1.0 / math.sqrt(2048 * 1.0)
F
Felix 已提交
509
        self.fc = Linear(
F
Felix 已提交
510 511
            2048,
            class_num,
D
dongshuilong 已提交
512
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
F
Felix 已提交
513
            bias_attr=ParamAttr())
514 515 516 517 518

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
F
Felix 已提交
519 520

    def forward(self, x):
F
Felix 已提交
521
        x = self.inception_stem(x)
F
Felix 已提交
522
        for inception_block in self.inception_block_list:
D
dongshuilong 已提交
523
            x = inception_block(x)
F
Felix 已提交
524
        x = self.avg_pool(x)
F
Felix 已提交
525
        x = paddle.reshape(x, shape=[-1, 2048])
F
Felix 已提交
526 527
        x = self.dropout(x)
        x = self.fc(x)
F
Felix 已提交
528
        return x
F
Felix 已提交
529 530


D
dongshuilong 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def InceptionV3(pretrained=False, use_ssld=False, **kwargs):
F
Felix 已提交
545 546 547
    """
    InceptionV3
    Args:
D
dongshuilong 已提交
548 549 550
        pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
                    if str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
F
Felix 已提交
551
    Returns:
G
gaotingquan 已提交
552
        model: nn.Layer. Specific `InceptionV3` model
F
Felix 已提交
553
    """
554 555 556 557
    model = Inception_V3(
        NET_CONFIG,
        stages_pattern=MODEL_STAGES_PATTERN["InceptionV3"],
        **kwargs)
D
dongshuilong 已提交
558
    _load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld)
F
Felix 已提交
559
    return model