xception_deeplab.py 12.8 KB
Newer Older
W
WuHaobo 已提交
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
littletomatodonkey's avatar
littletomatodonkey 已提交
5 6
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
W
WuHaobo 已提交
7

8
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
W
WuHaobo 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def gen_bottleneck_params(backbone='xception_65'):
    if backbone == 'xception_65':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_41':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (8, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_71':
        bottleneck_params = {
            "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    else:
        raise Exception(
            "xception backbont only support xception_41/xception_65/xception_71"
        )
    return bottleneck_params


littletomatodonkey's avatar
littletomatodonkey 已提交
61
class ConvBNLayer(nn.Layer):
62 63 64 65 66 67 68 69 70 71
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
72 73 74 75
        self._conv = Conv2d(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=filter_size,
76 77
            stride=stride,
            padding=padding,
littletomatodonkey's avatar
littletomatodonkey 已提交
78
            weight_attr=ParamAttr(name=name + "/weights"),
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            bias_attr=False)
        self._bn = BatchNorm(
            num_channels=output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/BatchNorm/beta"),
            moving_mean_name=name + "/BatchNorm/moving_mean",
            moving_variance_name=name + "/BatchNorm/moving_variance")

    def forward(self, inputs):
        return self._bn(self._conv(inputs))


littletomatodonkey's avatar
littletomatodonkey 已提交
94
class Seperate_Conv(nn.Layer):
95 96 97 98 99 100 101 102 103 104
    def __init__(self,
                 input_channels,
                 output_channels,
                 stride,
                 filter,
                 dilation=1,
                 act=None,
                 name=None):
        super(Seperate_Conv, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
105 106 107 108
        self._conv1 = Conv2d(
            in_channels=input_channels,
            out_channels=input_channels,
            kernel_size=filter,
109 110 111 112
            stride=stride,
            groups=input_channels,
            padding=(filter) // 2 * dilation,
            dilation=dilation,
littletomatodonkey's avatar
littletomatodonkey 已提交
113
            weight_attr=ParamAttr(name=name + "/depthwise/weights"),
114 115 116 117 118 119 120 121 122 123
            bias_attr=False)
        self._bn1 = BatchNorm(
            input_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"),
            moving_mean_name=name + "/depthwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/depthwise/BatchNorm/moving_variance")
littletomatodonkey's avatar
littletomatodonkey 已提交
124
        self._conv2 = Conv2d(
125 126 127 128 129 130
            input_channels,
            output_channels,
            1,
            stride=1,
            groups=1,
            padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
131
            weight_attr=ParamAttr(name=name + "/pointwise/weights"),
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            bias_attr=False)
        self._bn2 = BatchNorm(
            output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"),
            moving_mean_name=name + "/pointwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/pointwise/BatchNorm/moving_variance")

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._bn1(x)
        x = self._conv2(x)
        x = self._bn2(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
151
class Xception_Block(nn.Layer):
152 153 154 155 156 157 158 159 160 161 162
    def __init__(self,
                 input_channels,
                 output_channels,
                 strides=1,
                 filter_size=3,
                 dilation=1,
                 skip_conv=True,
                 has_skip=True,
                 activation_fn_in_separable_conv=False,
                 name=None):
        super(Xception_Block, self).__init__()
W
WuHaobo 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        repeat_number = 3
        output_channels = check_data(output_channels, repeat_number)
        filter_size = check_data(filter_size, repeat_number)
        strides = check_data(strides, repeat_number)

        self.has_skip = has_skip
        self.skip_conv = skip_conv
        self.activation_fn_in_separable_conv = activation_fn_in_separable_conv
        if not activation_fn_in_separable_conv:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                dilation=dilation,
                name=name + "/separable_conv3")
W
WuHaobo 已提交
194
        else:
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv3")

        if has_skip and skip_conv:
            self._short = ConvBNLayer(
                input_channels,
                output_channels[-1],
                1,
                stride=strides[-1],
                padding=0,
                name=name + "/shortcut")

    def forward(self, inputs):
        if not self.activation_fn_in_separable_conv:
littletomatodonkey's avatar
littletomatodonkey 已提交
231
            x = F.relu(inputs)
232
            x = self._conv1(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
233
            x = F.relu(x)
234
            x = self._conv2(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
235
            x = F.relu(x)
236 237 238 239 240 241 242 243 244 245 246
            x = self._conv3(x)
        else:
            x = self._conv1(inputs)
            x = self._conv2(x)
            x = self._conv3(x)
        if self.has_skip is False:
            return x
        if self.skip_conv:
            skip = self._short(inputs)
        else:
            skip = inputs
littletomatodonkey's avatar
littletomatodonkey 已提交
247
        return paddle.elementwise_add(x, skip)
248 249


littletomatodonkey's avatar
littletomatodonkey 已提交
250
class XceptionDeeplab(nn.Layer):
251
    def __init__(self, backbone, class_dim=1000):
W
wqz960 已提交
252
        super(XceptionDeeplab, self).__init__()
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

        bottleneck_params = gen_bottleneck_params(backbone)
        self.backbone = backbone

        self._conv1 = ConvBNLayer(
            3,
            32,
            3,
            stride=2,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv1")
        self._conv2 = ConvBNLayer(
            32,
            64,
            3,
            stride=1,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv2")

        self.block_num = bottleneck_params["entry_flow"][0]
        self.strides = bottleneck_params["entry_flow"][1]
        self.chns = bottleneck_params["entry_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)

        self.entry_flow = []
        self.middle_flow = []

W
WuHaobo 已提交
283
        self.stride = 2
284
        self.output_stride = 32
W
WuHaobo 已提交
285 286
        s = self.stride

287 288 289 290 291 292 293 294 295 296 297 298
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/entry_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=64 if i == 0 else self.chns[i - 1],
                    output_channels=self.chns[i],
                    strides=[1, 1, self.stride],
                    name=self.backbone + "/entry_flow/block" + str(i + 1)))
            self.entry_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
299 300
        self.stride = s

301 302 303 304 305
        self.block_num = bottleneck_params["middle_flow"][0]
        self.strides = bottleneck_params["middle_flow"][1]
        self.chns = bottleneck_params["middle_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
306 307
        s = self.stride

308 309 310 311 312 313 314 315 316 317 318 319 320
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/middle_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=728,
                    output_channels=728,
                    strides=[1, 1, self.strides[i]],
                    skip_conv=False,
                    name=self.backbone + "/middle_flow/block" + str(i + 1)))
            self.middle_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
321
        self.stride = s
322 323 324 325 326 327

        self.block_num = bottleneck_params["exit_flow"][0]
        self.strides = bottleneck_params["exit_flow"][1]
        self.chns = bottleneck_params["exit_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
328
        s = self.stride
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        stride = self.strides[0] if check_stride(s * self.strides[0],
                                                 self.output_stride) else 1
        self._exit_flow_1 = Xception_Block(
            728,
            self.chns[0], [1, 1, stride],
            name=self.backbone + "/exit_flow/block1")
        s = s * stride
        stride = self.strides[1] if check_stride(s * self.strides[1],
                                                 self.output_stride) else 1
        self._exit_flow_2 = Xception_Block(
            self.chns[0][-1],
            self.chns[1], [1, 1, stride],
            dilation=2,
            has_skip=False,
            activation_fn_in_separable_conv=True,
            name=self.backbone + "/exit_flow/block2")
        s = s * stride
W
WuHaobo 已提交
346 347

        self.stride = s
348 349

        self._drop = Dropout(p=0.5)
littletomatodonkey's avatar
littletomatodonkey 已提交
350
        self._pool = AdaptiveAvgPool2d(1)
351 352 353
        self._fc = Linear(
            self.chns[1][-1],
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
354
            weight_attr=ParamAttr(name="fc_weights"),
355 356 357 358 359 360 361 362 363 364 365 366 367
            bias_attr=ParamAttr(name="fc_bias"))

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        for ef in self.entry_flow:
            x = ef(x)
        for mf in self.middle_flow:
            x = mf(x)
        x = self._exit_flow_1(x)
        x = self._exit_flow_2(x)
        x = self._drop(x)
        x = self._pool(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
368
        x = paddle.squeeze(x, axis=[2, 3])
369 370
        x = self._fc(x)
        return x
W
WuHaobo 已提交
371 372


W
wqz960 已提交
373 374
def Xception41_deeplab(**args):
    model = XceptionDeeplab('xception_41', **args)
W
WuHaobo 已提交
375 376 377
    return model


W
wqz960 已提交
378 379
def Xception65_deeplab(**args):
    model = XceptionDeeplab("xception_65", **args)
W
WuHaobo 已提交
380 381 382
    return model


W
wqz960 已提交
383 384
def Xception71_deeplab(**args):
    model = XceptionDeeplab("xception_71", **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
385
    return model