xception_deeplab.py 13.1 KB
Newer Older
1 2
import numpy as np
import argparse
W
WuHaobo 已提交
3 4
import paddle
import paddle.fluid as fluid
5 6 7 8 9 10
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework
W
WuHaobo 已提交
11

12 13 14
import math
import sys
import time
W
WuHaobo 已提交
15

16
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
W
WuHaobo 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def gen_bottleneck_params(backbone='xception_65'):
    if backbone == 'xception_65':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_41':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (8, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_71':
        bottleneck_params = {
            "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    else:
        raise Exception(
            "xception backbont only support xception_41/xception_65/xception_71"
        )
    return bottleneck_params


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=input_channels,
            num_filters=output_channels,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=ParamAttr(name=name + "/weights"),
            bias_attr=False)
        self._bn = BatchNorm(
            num_channels=output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/BatchNorm/beta"),
            moving_mean_name=name + "/BatchNorm/moving_mean",
            moving_variance_name=name + "/BatchNorm/moving_variance")

    def forward(self, inputs):
        return self._bn(self._conv(inputs))


class Seperate_Conv(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 stride,
                 filter,
                 dilation=1,
                 act=None,
                 name=None):
        super(Seperate_Conv, self).__init__()

        self._conv1 = Conv2D(
            num_channels=input_channels,
            num_filters=input_channels,
            filter_size=filter,
            stride=stride,
            groups=input_channels,
            padding=(filter) // 2 * dilation,
            dilation=dilation,
            param_attr=ParamAttr(name=name + "/depthwise/weights"),
            bias_attr=False)
        self._bn1 = BatchNorm(
            input_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"),
            moving_mean_name=name + "/depthwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/depthwise/BatchNorm/moving_variance")
        self._conv2 = Conv2D(
            input_channels,
            output_channels,
            1,
            stride=1,
            groups=1,
            padding=0,
            param_attr=ParamAttr(name=name + "/pointwise/weights"),
            bias_attr=False)
        self._bn2 = BatchNorm(
            output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"),
            moving_mean_name=name + "/pointwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/pointwise/BatchNorm/moving_variance")

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._bn1(x)
        x = self._conv2(x)
        x = self._bn2(x)
        return x


class Xception_Block(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 strides=1,
                 filter_size=3,
                 dilation=1,
                 skip_conv=True,
                 has_skip=True,
                 activation_fn_in_separable_conv=False,
                 name=None):
        super(Xception_Block, self).__init__()
W
WuHaobo 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        repeat_number = 3
        output_channels = check_data(output_channels, repeat_number)
        filter_size = check_data(filter_size, repeat_number)
        strides = check_data(strides, repeat_number)

        self.has_skip = has_skip
        self.skip_conv = skip_conv
        self.activation_fn_in_separable_conv = activation_fn_in_separable_conv
        if not activation_fn_in_separable_conv:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                dilation=dilation,
                name=name + "/separable_conv3")
W
WuHaobo 已提交
202
        else:
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv3")

        if has_skip and skip_conv:
            self._short = ConvBNLayer(
                input_channels,
                output_channels[-1],
                1,
                stride=strides[-1],
                padding=0,
                name=name + "/shortcut")

    def forward(self, inputs):
        layer_helper = LayerHelper(self.full_name(), act='relu')
        if not self.activation_fn_in_separable_conv:
            x = layer_helper.append_activation(inputs)
            x = self._conv1(x)
            x = layer_helper.append_activation(x)
            x = self._conv2(x)
            x = layer_helper.append_activation(x)
            x = self._conv3(x)
        else:
            x = self._conv1(inputs)
            x = self._conv2(x)
            x = self._conv3(x)
        if self.has_skip is False:
            return x
        if self.skip_conv:
            skip = self._short(inputs)
        else:
            skip = inputs
        return fluid.layers.elementwise_add(x, skip)


class Xception_deeplab(fluid.dygraph.Layer):
    def __init__(self, backbone, class_dim=1000):
        super(Xception_deeplab, self).__init__()

        bottleneck_params = gen_bottleneck_params(backbone)
        self.backbone = backbone

        self._conv1 = ConvBNLayer(
            3,
            32,
            3,
            stride=2,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv1")
        self._conv2 = ConvBNLayer(
            32,
            64,
            3,
            stride=1,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv2")

        self.block_num = bottleneck_params["entry_flow"][0]
        self.strides = bottleneck_params["entry_flow"][1]
        self.chns = bottleneck_params["entry_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)

        self.entry_flow = []
        self.middle_flow = []

W
WuHaobo 已提交
292
        self.stride = 2
293
        self.output_stride = 32
W
WuHaobo 已提交
294 295
        s = self.stride

296 297 298 299 300 301 302 303 304 305 306 307
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/entry_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=64 if i == 0 else self.chns[i - 1],
                    output_channels=self.chns[i],
                    strides=[1, 1, self.stride],
                    name=self.backbone + "/entry_flow/block" + str(i + 1)))
            self.entry_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
308 309
        self.stride = s

310 311 312 313 314
        self.block_num = bottleneck_params["middle_flow"][0]
        self.strides = bottleneck_params["middle_flow"][1]
        self.chns = bottleneck_params["middle_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
315 316
        s = self.stride

317 318 319 320 321 322 323 324 325 326 327 328 329
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/middle_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=728,
                    output_channels=728,
                    strides=[1, 1, self.strides[i]],
                    skip_conv=False,
                    name=self.backbone + "/middle_flow/block" + str(i + 1)))
            self.middle_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
330
        self.stride = s
331 332 333 334 335 336

        self.block_num = bottleneck_params["exit_flow"][0]
        self.strides = bottleneck_params["exit_flow"][1]
        self.chns = bottleneck_params["exit_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
337
        s = self.stride
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        stride = self.strides[0] if check_stride(s * self.strides[0],
                                                 self.output_stride) else 1
        self._exit_flow_1 = Xception_Block(
            728,
            self.chns[0], [1, 1, stride],
            name=self.backbone + "/exit_flow/block1")
        s = s * stride
        stride = self.strides[1] if check_stride(s * self.strides[1],
                                                 self.output_stride) else 1
        self._exit_flow_2 = Xception_Block(
            self.chns[0][-1],
            self.chns[1], [1, 1, stride],
            dilation=2,
            has_skip=False,
            activation_fn_in_separable_conv=True,
            name=self.backbone + "/exit_flow/block2")
        s = s * stride
W
WuHaobo 已提交
355 356

        self.stride = s
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

        self._drop = Dropout(p=0.5)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)
        self._fc = Linear(
            self.chns[1][-1],
            class_dim,
            param_attr=ParamAttr(name="fc_weights"),
            bias_attr=ParamAttr(name="fc_bias"))

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        for ef in self.entry_flow:
            x = ef(x)
        for mf in self.middle_flow:
            x = mf(x)
        x = self._exit_flow_1(x)
        x = self._exit_flow_2(x)
        x = self._drop(x)
        x = self._pool(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._fc(x)
        return x
W
WuHaobo 已提交
380 381 382


def Xception41_deeplab():
383
    model = Xception_deeplab('xception_41')
W
WuHaobo 已提交
384 385 386 387
    return model


def Xception65_deeplab():
388
    model = Xception_deeplab("xception_65")
W
WuHaobo 已提交
389 390 391 392
    return model


def Xception71_deeplab():
393
    model = Xception_deeplab("xception_71")
W
WuHaobo 已提交
394
    return model