xception_deeplab.py 12.8 KB
Newer Older
W
WuHaobo 已提交
1 2
import paddle
import paddle.fluid as fluid
3 4
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
W
WuHaobo 已提交
5

6
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
W
WuHaobo 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def gen_bottleneck_params(backbone='xception_65'):
    if backbone == 'xception_65':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_41':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (8, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_71':
        bottleneck_params = {
            "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    else:
        raise Exception(
            "xception backbont only support xception_41/xception_65/xception_71"
        )
    return bottleneck_params


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=input_channels,
            num_filters=output_channels,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=ParamAttr(name=name + "/weights"),
            bias_attr=False)
        self._bn = BatchNorm(
            num_channels=output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/BatchNorm/beta"),
            moving_mean_name=name + "/BatchNorm/moving_mean",
            moving_variance_name=name + "/BatchNorm/moving_variance")

    def forward(self, inputs):
        return self._bn(self._conv(inputs))


class Seperate_Conv(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 stride,
                 filter,
                 dilation=1,
                 act=None,
                 name=None):
        super(Seperate_Conv, self).__init__()

        self._conv1 = Conv2D(
            num_channels=input_channels,
            num_filters=input_channels,
            filter_size=filter,
            stride=stride,
            groups=input_channels,
            padding=(filter) // 2 * dilation,
            dilation=dilation,
            param_attr=ParamAttr(name=name + "/depthwise/weights"),
            bias_attr=False)
        self._bn1 = BatchNorm(
            input_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"),
            moving_mean_name=name + "/depthwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/depthwise/BatchNorm/moving_variance")
        self._conv2 = Conv2D(
            input_channels,
            output_channels,
            1,
            stride=1,
            groups=1,
            padding=0,
            param_attr=ParamAttr(name=name + "/pointwise/weights"),
            bias_attr=False)
        self._bn2 = BatchNorm(
            output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"),
            moving_mean_name=name + "/pointwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/pointwise/BatchNorm/moving_variance")

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._bn1(x)
        x = self._conv2(x)
        x = self._bn2(x)
        return x


class Xception_Block(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 strides=1,
                 filter_size=3,
                 dilation=1,
                 skip_conv=True,
                 has_skip=True,
                 activation_fn_in_separable_conv=False,
                 name=None):
        super(Xception_Block, self).__init__()
W
WuHaobo 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        repeat_number = 3
        output_channels = check_data(output_channels, repeat_number)
        filter_size = check_data(filter_size, repeat_number)
        strides = check_data(strides, repeat_number)

        self.has_skip = has_skip
        self.skip_conv = skip_conv
        self.activation_fn_in_separable_conv = activation_fn_in_separable_conv
        if not activation_fn_in_separable_conv:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                dilation=dilation,
                name=name + "/separable_conv3")
W
WuHaobo 已提交
192
        else:
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv3")

        if has_skip and skip_conv:
            self._short = ConvBNLayer(
                input_channels,
                output_channels[-1],
                1,
                stride=strides[-1],
                padding=0,
                name=name + "/shortcut")

    def forward(self, inputs):
        if not self.activation_fn_in_separable_conv:
littletomatodonkey's avatar
littletomatodonkey 已提交
229
            x = fluid.layers.relu(inputs)
230
            x = self._conv1(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
231
            x = fluid.layers.relu(x)
232
            x = self._conv2(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
233
            x = fluid.layers.relu(x)
234 235 236 237 238 239 240 241 242 243 244 245 246 247
            x = self._conv3(x)
        else:
            x = self._conv1(inputs)
            x = self._conv2(x)
            x = self._conv3(x)
        if self.has_skip is False:
            return x
        if self.skip_conv:
            skip = self._short(inputs)
        else:
            skip = inputs
        return fluid.layers.elementwise_add(x, skip)


W
wqz960 已提交
248
class XceptionDeeplab(fluid.dygraph.Layer):
249
    def __init__(self, backbone, class_dim=1000):
W
wqz960 已提交
250
        super(XceptionDeeplab, self).__init__()
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

        bottleneck_params = gen_bottleneck_params(backbone)
        self.backbone = backbone

        self._conv1 = ConvBNLayer(
            3,
            32,
            3,
            stride=2,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv1")
        self._conv2 = ConvBNLayer(
            32,
            64,
            3,
            stride=1,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv2")

        self.block_num = bottleneck_params["entry_flow"][0]
        self.strides = bottleneck_params["entry_flow"][1]
        self.chns = bottleneck_params["entry_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)

        self.entry_flow = []
        self.middle_flow = []

W
WuHaobo 已提交
281
        self.stride = 2
282
        self.output_stride = 32
W
WuHaobo 已提交
283 284
        s = self.stride

285 286 287 288 289 290 291 292 293 294 295 296
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/entry_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=64 if i == 0 else self.chns[i - 1],
                    output_channels=self.chns[i],
                    strides=[1, 1, self.stride],
                    name=self.backbone + "/entry_flow/block" + str(i + 1)))
            self.entry_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
297 298
        self.stride = s

299 300 301 302 303
        self.block_num = bottleneck_params["middle_flow"][0]
        self.strides = bottleneck_params["middle_flow"][1]
        self.chns = bottleneck_params["middle_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
304 305
        s = self.stride

306 307 308 309 310 311 312 313 314 315 316 317 318
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/middle_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=728,
                    output_channels=728,
                    strides=[1, 1, self.strides[i]],
                    skip_conv=False,
                    name=self.backbone + "/middle_flow/block" + str(i + 1)))
            self.middle_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
319
        self.stride = s
320 321 322 323 324 325

        self.block_num = bottleneck_params["exit_flow"][0]
        self.strides = bottleneck_params["exit_flow"][1]
        self.chns = bottleneck_params["exit_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
326
        s = self.stride
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        stride = self.strides[0] if check_stride(s * self.strides[0],
                                                 self.output_stride) else 1
        self._exit_flow_1 = Xception_Block(
            728,
            self.chns[0], [1, 1, stride],
            name=self.backbone + "/exit_flow/block1")
        s = s * stride
        stride = self.strides[1] if check_stride(s * self.strides[1],
                                                 self.output_stride) else 1
        self._exit_flow_2 = Xception_Block(
            self.chns[0][-1],
            self.chns[1], [1, 1, stride],
            dilation=2,
            has_skip=False,
            activation_fn_in_separable_conv=True,
            name=self.backbone + "/exit_flow/block2")
        s = s * stride
W
WuHaobo 已提交
344 345

        self.stride = s
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

        self._drop = Dropout(p=0.5)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)
        self._fc = Linear(
            self.chns[1][-1],
            class_dim,
            param_attr=ParamAttr(name="fc_weights"),
            bias_attr=ParamAttr(name="fc_bias"))

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        for ef in self.entry_flow:
            x = ef(x)
        for mf in self.middle_flow:
            x = mf(x)
        x = self._exit_flow_1(x)
        x = self._exit_flow_2(x)
        x = self._drop(x)
        x = self._pool(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._fc(x)
        return x
W
WuHaobo 已提交
369 370


W
wqz960 已提交
371 372
def Xception41_deeplab(**args):
    model = XceptionDeeplab('xception_41', **args)
W
WuHaobo 已提交
373 374 375
    return model


W
wqz960 已提交
376 377
def Xception65_deeplab(**args):
    model = XceptionDeeplab("xception_65", **args)
W
WuHaobo 已提交
378 379 380
    return model


W
wqz960 已提交
381 382 383
def Xception71_deeplab(**args):
    model = XceptionDeeplab("xception_71", **args)
    return model