__init__.py 6.1 KB
Newer Older
D
dongshuilong 已提交
1
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
littletomatodonkey 已提交
15 16
import copy
import importlib
17
from pyexpat import features
L
littletomatodonkey 已提交
18 19

import paddle.nn as nn
A
Aurelius84 已提交
20 21
from paddle.jit import to_static
from paddle.static import InputSpec
L
littletomatodonkey 已提交
22

D
dongshuilong 已提交
23
from . import backbone, gears
W
weishengyu 已提交
24
from .backbone import *
D
dongshuilong 已提交
25
from .gears import build_gear
W
WuHaobo 已提交
26
from .utils import *
R
root 已提交
27 28 29 30 31
from .backbone.base.theseus_layer import TheseusLayer
from ..utils import logger
from ..utils.save_load import load_dygraph_pretrain
from .slim import prune_model, quantize_model
from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
W
weishengyu 已提交
32

wc晨曦's avatar
wc晨曦 已提交
33
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
B
Bin Lu 已提交
34

L
littletomatodonkey 已提交
35

littletomatodonkey's avatar
littletomatodonkey 已提交
36
def build_model(config, mode="train"):
W
weishengyu 已提交
37 38
    arch_config = copy.deepcopy(config["Arch"])
    model_type = arch_config.pop("name")
C
cuicheng01 已提交
39
    use_sync_bn = arch_config.pop("use_sync_bn", False)
L
littletomatodonkey 已提交
40
    mod = importlib.import_module(__name__)
W
weishengyu 已提交
41
    arch = getattr(mod, model_type)(**arch_config)
C
cuicheng01 已提交
42
    if use_sync_bn:
43 44 45 46 47
        if config["Global"]["device"] == "gpu":
            arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
        else:
            msg = "SyncBatchNorm can only be used on GPU device. The releated setting has been ignored."
            logger.warning(msg)
C
cuicheng01 已提交
48

W
weishengyu 已提交
49 50
    if isinstance(arch, TheseusLayer):
        prune_model(config, arch)
littletomatodonkey's avatar
littletomatodonkey 已提交
51
        quantize_model(config, arch, mode)
52

L
littletomatodonkey 已提交
53 54 55
    return arch


A
Aurelius84 已提交
56 57 58 59 60 61 62
def apply_to_static(config, model):
    support_to_static = config['Global'].get('to_static', False)

    if support_to_static:
        specs = None
        if 'image_shape' in config['Global']:
            specs = [InputSpec([None] + config['Global']['image_shape'])]
63
            specs[0].stop_gradient = True
A
Aurelius84 已提交
64 65 66 67 68 69
        model = to_static(model, input_spec=specs)
        logger.info("Successfully to apply @to_static with specs: {}".format(
            specs))
    return model


W
weishengyu 已提交
70
class RecModel(TheseusLayer):
L
littletomatodonkey 已提交
71 72 73 74
    def __init__(self, **config):
        super().__init__()
        backbone_config = config["Backbone"]
        backbone_name = backbone_config.pop("name")
75 76 77
        self.decoup = False
        if backbone_config.get('decoup', False):
            self.decoup = backbone_config.pop('decoup')
D
dongshuilong 已提交
78
        self.backbone = eval(backbone_name)(**backbone_config)
D
dongshuilong 已提交
79
        if "BackboneStopLayer" in config:
D
dongshuilong 已提交
80 81
            backbone_stop_layer = config["BackboneStopLayer"]["name"]
            self.backbone.stop_after(backbone_stop_layer)
D
dongshuilong 已提交
82

D
dongshuilong 已提交
83 84
        if "Neck" in config:
            self.neck = build_gear(config["Neck"])
L
littletomatodonkey 已提交
85 86
        else:
            self.neck = None
D
dongshuilong 已提交
87

D
dongshuilong 已提交
88 89 90 91
        if "Head" in config:
            self.head = build_gear(config["Head"])
        else:
            self.head = None
L
littletomatodonkey 已提交
92

W
weishengyu 已提交
93
    def forward(self, x, label=None):
94
        
95
        out = dict()
D
dongshuilong 已提交
96
        x = self.backbone(x)
97
        
98
        out["backbone"] = x
99 100 101 102 103 104 105
        if self.decoup:
            logits_index, features_index = self.decoup['logits_index'], self.decoup['features_index']
            logits, feat = x[logits_index], x[features_index]
            out['logits'] = logits
            out['features'] =feat
            return out

L
littletomatodonkey 已提交
106
        if self.neck is not None:
107 108 109
            feat = self.neck(x)
            out["neck"] = feat
        out["features"] = out['neck'] if self.neck else x
D
dongshuilong 已提交
110
        if self.head is not None:
111
            y = self.head(out['features'], label)
littletomatodonkey's avatar
littletomatodonkey 已提交
112
            out["logits"] = y
113
        return out
114 115 116 117 118 119


class DistillationModel(nn.Layer):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
120 121
                 freeze_params_list=None,
                 **kargs):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        super().__init__()
        assert isinstance(models, list)
        self.model_list = []
        self.model_name_list = []
        if pretrained_list is not None:
            assert len(pretrained_list) == len(models)

        if freeze_params_list is None:
            freeze_params_list = [False] * len(models)
        assert len(freeze_params_list) == len(models)
        for idx, model_config in enumerate(models):
            assert len(model_config) == 1
            key = list(model_config.keys())[0]
            model_config = model_config[key]
            model_name = model_config.pop("name")
            model = eval(model_name)(**model_config)

            if freeze_params_list[idx]:
                for param in model.parameters():
                    param.trainable = False
            self.model_list.append(self.add_sublayer(key, model))
            self.model_name_list.append(key)

        if pretrained_list is not None:
            for idx, pretrained in enumerate(pretrained_list):
                if pretrained is not None:
                    load_dygraph_pretrain(
                        self.model_name_list[idx], path=pretrained)

    def forward(self, x, label=None):
        result_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                result_dict[model_name] = self.model_list[idx](x)
            else:
157
                result_dict[model_name] = self.model_list[idx](x, label)
158
        return result_dict
wc晨曦's avatar
wc晨曦 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179


class AttentionModel(DistillationModel):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
                 freeze_params_list=None,
                 **kargs):
        super().__init__(models, pretrained_list, freeze_params_list, **kargs)

    def forward(self, x, label=None):
        result_dict = dict()
        out = x
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                out = self.model_list[idx](out)
                result_dict.update(out)
            else:
                out = self.model_list[idx](out, label)
                result_dict.update(out)
        return result_dict