__init__.py 5.6 KB
Newer Older
D
dongshuilong 已提交
1
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
littletomatodonkey 已提交
15 16 17 18
import copy
import importlib

import paddle.nn as nn
A
Aurelius84 已提交
19 20
from paddle.jit import to_static
from paddle.static import InputSpec
L
littletomatodonkey 已提交
21

D
dongshuilong 已提交
22
from . import backbone, gears
W
weishengyu 已提交
23
from .backbone import *
D
dongshuilong 已提交
24
from .gears import build_gear
W
WuHaobo 已提交
25
from .utils import *
R
root 已提交
26 27 28 29 30
from .backbone.base.theseus_layer import TheseusLayer
from ..utils import logger
from ..utils.save_load import load_dygraph_pretrain
from .slim import prune_model, quantize_model
from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
W
weishengyu 已提交
31

wc晨曦's avatar
wc晨曦 已提交
32
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
B
Bin Lu 已提交
33

L
littletomatodonkey 已提交
34

littletomatodonkey's avatar
littletomatodonkey 已提交
35
def build_model(config, mode="train"):
W
weishengyu 已提交
36 37
    arch_config = copy.deepcopy(config["Arch"])
    model_type = arch_config.pop("name")
C
cuicheng01 已提交
38
    use_sync_bn = arch_config.pop("use_sync_bn", False)
L
littletomatodonkey 已提交
39
    mod = importlib.import_module(__name__)
W
weishengyu 已提交
40
    arch = getattr(mod, model_type)(**arch_config)
C
cuicheng01 已提交
41
    if use_sync_bn:
42 43 44 45 46
        if config["Global"]["device"] == "gpu":
            arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
        else:
            msg = "SyncBatchNorm can only be used on GPU device. The releated setting has been ignored."
            logger.warning(msg)
C
cuicheng01 已提交
47

W
weishengyu 已提交
48 49
    if isinstance(arch, TheseusLayer):
        prune_model(config, arch)
littletomatodonkey's avatar
littletomatodonkey 已提交
50
        quantize_model(config, arch, mode)
51

L
littletomatodonkey 已提交
52 53 54
    return arch


A
Aurelius84 已提交
55 56 57 58 59 60 61
def apply_to_static(config, model):
    support_to_static = config['Global'].get('to_static', False)

    if support_to_static:
        specs = None
        if 'image_shape' in config['Global']:
            specs = [InputSpec([None] + config['Global']['image_shape'])]
62
            specs[0].stop_gradient = True
A
Aurelius84 已提交
63 64 65 66 67 68
        model = to_static(model, input_spec=specs)
        logger.info("Successfully to apply @to_static with specs: {}".format(
            specs))
    return model


W
weishengyu 已提交
69
class RecModel(TheseusLayer):
L
littletomatodonkey 已提交
70 71 72 73
    def __init__(self, **config):
        super().__init__()
        backbone_config = config["Backbone"]
        backbone_name = backbone_config.pop("name")
D
dongshuilong 已提交
74
        self.backbone = eval(backbone_name)(**backbone_config)
D
dongshuilong 已提交
75
        if "BackboneStopLayer" in config:
D
dongshuilong 已提交
76 77
            backbone_stop_layer = config["BackboneStopLayer"]["name"]
            self.backbone.stop_after(backbone_stop_layer)
D
dongshuilong 已提交
78

D
dongshuilong 已提交
79 80
        if "Neck" in config:
            self.neck = build_gear(config["Neck"])
L
littletomatodonkey 已提交
81 82
        else:
            self.neck = None
D
dongshuilong 已提交
83

D
dongshuilong 已提交
84 85 86 87
        if "Head" in config:
            self.head = build_gear(config["Head"])
        else:
            self.head = None
L
littletomatodonkey 已提交
88

W
weishengyu 已提交
89
    def forward(self, x, label=None):
90
        out = dict()
D
dongshuilong 已提交
91
        x = self.backbone(x)
92
        out["backbone"] = x
L
littletomatodonkey 已提交
93
        if self.neck is not None:
D
dongshuilong 已提交
94
            x = self.neck(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
95
            out["neck"] = x
96
        out["features"] = x
D
dongshuilong 已提交
97
        if self.head is not None:
D
dongshuilong 已提交
98
            y = self.head(x, label)
littletomatodonkey's avatar
littletomatodonkey 已提交
99
            out["logits"] = y
100
        return out
101 102 103 104 105 106


class DistillationModel(nn.Layer):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
107 108
                 freeze_params_list=None,
                 **kargs):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        super().__init__()
        assert isinstance(models, list)
        self.model_list = []
        self.model_name_list = []
        if pretrained_list is not None:
            assert len(pretrained_list) == len(models)

        if freeze_params_list is None:
            freeze_params_list = [False] * len(models)
        assert len(freeze_params_list) == len(models)
        for idx, model_config in enumerate(models):
            assert len(model_config) == 1
            key = list(model_config.keys())[0]
            model_config = model_config[key]
            model_name = model_config.pop("name")
            model = eval(model_name)(**model_config)

            if freeze_params_list[idx]:
                for param in model.parameters():
                    param.trainable = False
            self.model_list.append(self.add_sublayer(key, model))
            self.model_name_list.append(key)

        if pretrained_list is not None:
            for idx, pretrained in enumerate(pretrained_list):
                if pretrained is not None:
                    load_dygraph_pretrain(
                        self.model_name_list[idx], path=pretrained)

    def forward(self, x, label=None):
        result_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                result_dict[model_name] = self.model_list[idx](x)
            else:
144
                result_dict[model_name] = self.model_list[idx](x, label)
145
        return result_dict
wc晨曦's avatar
wc晨曦 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166


class AttentionModel(DistillationModel):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
                 freeze_params_list=None,
                 **kargs):
        super().__init__(models, pretrained_list, freeze_params_list, **kargs)

    def forward(self, x, label=None):
        result_dict = dict()
        out = x
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                out = self.model_list[idx](out)
                result_dict.update(out)
            else:
                out = self.model_list[idx](out, label)
                result_dict.update(out)
        return result_dict