__init__.py 4.4 KB
Newer Older
D
dongshuilong 已提交
1
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
littletomatodonkey 已提交
15 16 17 18
import copy
import importlib

import paddle.nn as nn
A
Aurelius84 已提交
19 20
from paddle.jit import to_static
from paddle.static import InputSpec
L
littletomatodonkey 已提交
21

D
dongshuilong 已提交
22
from . import backbone, gears
W
weishengyu 已提交
23
from .backbone import *
D
dongshuilong 已提交
24
from .gears import build_gear
W
WuHaobo 已提交
25
from .utils import *
W
weishengyu 已提交
26
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
A
Aurelius84 已提交
27
from ppcls.utils import logger
28
from ppcls.utils.save_load import load_dygraph_pretrain
W
weishengyu 已提交
29
from ppcls.arch.slim import prune_model, quantize_model
W
weishengyu 已提交
30

L
littletomatodonkey 已提交
31

32
__all__ = ["build_model", "RecModel", "DistillationModel"]
B
Bin Lu 已提交
33

L
littletomatodonkey 已提交
34 35

def build_model(config):
W
weishengyu 已提交
36 37
    arch_config = copy.deepcopy(config["Arch"])
    model_type = arch_config.pop("name")
L
littletomatodonkey 已提交
38
    mod = importlib.import_module(__name__)
W
weishengyu 已提交
39 40 41 42
    arch = getattr(mod, model_type)(**arch_config)
    if isinstance(arch, TheseusLayer):
        prune_model(config, arch)
        quantize_model(config, arch)
L
littletomatodonkey 已提交
43 44 45
    return arch


A
Aurelius84 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58
def apply_to_static(config, model):
    support_to_static = config['Global'].get('to_static', False)

    if support_to_static:
        specs = None
        if 'image_shape' in config['Global']:
            specs = [InputSpec([None] + config['Global']['image_shape'])]
        model = to_static(model, input_spec=specs)
        logger.info("Successfully to apply @to_static with specs: {}".format(
            specs))
    return model


W
weishengyu 已提交
59
class RecModel(TheseusLayer):
L
littletomatodonkey 已提交
60 61 62 63
    def __init__(self, **config):
        super().__init__()
        backbone_config = config["Backbone"]
        backbone_name = backbone_config.pop("name")
D
dongshuilong 已提交
64
        self.backbone = eval(backbone_name)(**backbone_config)
D
dongshuilong 已提交
65
        if "BackboneStopLayer" in config:
D
dongshuilong 已提交
66 67
            backbone_stop_layer = config["BackboneStopLayer"]["name"]
            self.backbone.stop_after(backbone_stop_layer)
D
dongshuilong 已提交
68

D
dongshuilong 已提交
69 70
        if "Neck" in config:
            self.neck = build_gear(config["Neck"])
L
littletomatodonkey 已提交
71 72
        else:
            self.neck = None
D
dongshuilong 已提交
73

D
dongshuilong 已提交
74 75 76 77
        if "Head" in config:
            self.head = build_gear(config["Head"])
        else:
            self.head = None
L
littletomatodonkey 已提交
78

W
weishengyu 已提交
79
    def forward(self, x, label=None):
D
dongshuilong 已提交
80
        x = self.backbone(x)
L
littletomatodonkey 已提交
81
        if self.neck is not None:
D
dongshuilong 已提交
82
            x = self.neck(x)
D
dongshuilong 已提交
83
        if self.head is not None:
D
dongshuilong 已提交
84
            y = self.head(x, label)
W
dbg  
weishengyu 已提交
85 86
        else:
            y = None
D
dongshuilong 已提交
87
        return {"features": x, "logits": y}
88 89 90 91 92 93


class DistillationModel(nn.Layer):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
94 95
                 freeze_params_list=None,
                 **kargs):
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        super().__init__()
        assert isinstance(models, list)
        self.model_list = []
        self.model_name_list = []
        if pretrained_list is not None:
            assert len(pretrained_list) == len(models)

        if freeze_params_list is None:
            freeze_params_list = [False] * len(models)
        assert len(freeze_params_list) == len(models)
        for idx, model_config in enumerate(models):
            assert len(model_config) == 1
            key = list(model_config.keys())[0]
            model_config = model_config[key]
            model_name = model_config.pop("name")
            model = eval(model_name)(**model_config)

            if freeze_params_list[idx]:
                for param in model.parameters():
                    param.trainable = False
            self.model_list.append(self.add_sublayer(key, model))
            self.model_name_list.append(key)

        if pretrained_list is not None:
            for idx, pretrained in enumerate(pretrained_list):
                if pretrained is not None:
                    load_dygraph_pretrain(
                        self.model_name_list[idx], path=pretrained)

    def forward(self, x, label=None):
        result_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                result_dict[model_name] = self.model_list[idx](x)
            else:
131
                result_dict[model_name] = self.model_list[idx](x, label)
132
        return result_dict