engine.py 20.9 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24 25 26 27 28 29

from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
30
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
31 32 33
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
F
flytocc 已提交
34
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
35 36
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.utils.save_load import init_model
G
gaotingquan 已提交
37
from ppcls.utils.model_saver import ModelSaver
D
dongshuilong 已提交
38 39 40 41

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
42 43
from .train import build_train_epoch_func
from .evaluation import build_eval_func
44
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
45
from ppcls.engine import evaluation
D
dongshuilong 已提交
46 47 48
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
49
class Engine(object):
D
dongshuilong 已提交
50
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
51
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
52 53
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
54

D
dongshuilong 已提交
55
        # set seed
G
gaotingquan 已提交
56
        self._init_seed()
D
dongshuilong 已提交
57

D
dongshuilong 已提交
58
        # init logger
G
gaotingquan 已提交
59 60 61 62
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
        init_logger(log_file=log_file)
D
dongshuilong 已提交
63

G
gaotingquan 已提交
64 65 66
        # for visualdl
        self.vdl_writer = self._init_vdl()

D
dongshuilong 已提交
67
        # init train_func and eval_func
68
        self.train_epoch_func = build_train_epoch_func(self.config)
69
        self.eval_func = build_eval_func(self.config)
D
dongshuilong 已提交
70 71

        # set device
72
        self._init_device()
D
dongshuilong 已提交
73

74 75 76
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

D
dongshuilong 已提交
77
        # build dataloader
78
        self.use_dali = self.config["Global"].get("use_dali", False)
G
gaotingquan 已提交
79
        self.dataloader_dict = build_dataloader(self.config, mode)
D
dongshuilong 已提交
80 81

        # build loss
G
gaotingquan 已提交
82 83
        self.train_loss_func, self.unlabel_train_loss_func, self.eval_loss_func = build_loss(
            self.config, self.mode)
D
dongshuilong 已提交
84 85

        # build metric
G
gaotingquan 已提交
86
        self.train_metric_func, self.eval_metric_func = build_metrics(self)
D
dongshuilong 已提交
87 88

        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
89
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
90

D
dongshuilong 已提交
91
        # load_pretrain
G
gaotingquan 已提交
92
        self._init_pretrained()
D
dongshuilong 已提交
93 94

        # build optimizer
95
        self.optimizer, self.lr_sch = build_optimizer(self)
96

97
        # AMP training and evaluating
G
gaotingquan 已提交
98
        self._init_amp()
99 100

        # for distributed
G
gaotingquan 已提交
101
        self._init_dist()
D
dongshuilong 已提交
102

103 104
        print_config(config)

D
dongshuilong 已提交
105 106 107 108
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
G
gaotingquan 已提交
109 110 111
        start_eval_epoch = self.config["Global"].get("start_eval_epoch", 0) - 1
        epochs = self.config["Global"]["epochs"]

D
dongshuilong 已提交
112
        best_metric = {
C
cuicheng01 已提交
113
            "metric": -1.0,
D
dongshuilong 已提交
114 115
            "epoch": 0,
        }
G
gaotingquan 已提交
116

D
dongshuilong 已提交
117 118 119 120 121 122 123 124 125 126
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }

G
gaotingquan 已提交
127 128 129 130
        # build EMA model
        self.model_ema = self._build_ema_model()
        # TODO: mv best_metric_ema to best_metric dict
        best_metric_ema = 0
D
dongshuilong 已提交
131

G
gaotingquan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144
        # build model saver
        model_saver = ModelSaver(
            self,
            net_name="model",
            loss_name="train_loss_func",
            opt_name="optimizer",
            model_ema_name="model_ema")

        self._init_checkpoints(best_metric)

        # global iter counter
        self.global_step = 0
        for epoch_id in range(best_metric["epoch"] + 1, epochs + 1):
D
dongshuilong 已提交
145
            # for one epoch train
D
dongshuilong 已提交
146
            self.train_epoch_func(self, epoch_id, print_batch_step)
D
dongshuilong 已提交
147

littletomatodonkey's avatar
littletomatodonkey 已提交
148 149
            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
G
gaotingquan 已提交
150 151
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(epoch_id, epochs,
                                                             metric_msg))
D
dongshuilong 已提交
152 153
            self.output_info.clear()

G
gaotingquan 已提交
154
            acc = 0.0
D
dongshuilong 已提交
155 156
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
C
cuicheng01 已提交
157
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
D
dongshuilong 已提交
158
                acc = self.eval(epoch_id)
H
add xbm  
HydrogenSulfate 已提交
159 160 161 162

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
163
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
H
add xbm  
HydrogenSulfate 已提交
164 165
                        self.lr_sch[i].step(acc)

D
dongshuilong 已提交
166 167 168
                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
G
gaotingquan 已提交
169
                    model_saver.save(
D
dongshuilong 已提交
170
                        best_metric,
171
                        prefix="best_model",
littletomatodonkey's avatar
littletomatodonkey 已提交
172
                        save_student_model=True)
G
gaotingquan 已提交
173

D
dongshuilong 已提交
174 175 176 177 178 179 180 181 182 183
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

G
gaotingquan 已提交
184 185
                if self.model_ema:
                    ori_model, self.model = self.model, self.model_ema.module
F
flytocc 已提交
186 187
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
G
gaotingquan 已提交
188
                    self.model_ema.module.eval()
F
flytocc 已提交
189 190 191

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
G
gaotingquan 已提交
192 193 194 195 196 197
                        model_saver.save(
                            {
                                "metric": acc_ema,
                                "epoch": epoch_id
                            },
                            prefix="best_model_ema")
F
flytocc 已提交
198 199 200 201 202 203 204 205
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

D
dongshuilong 已提交
206
            # save model
D
dongshuilong 已提交
207
            if save_interval > 0 and epoch_id % save_interval == 0:
G
gaotingquan 已提交
208 209 210 211 212 213 214
                model_saver.save(
                    {
                        "metric": acc,
                        "epoch": epoch_id
                    },
                    prefix=f"epoch_{epoch_id}")

G
gaotingquan 已提交
215
            # save the latest model
G
gaotingquan 已提交
216 217 218 219 220
            model_saver.save(
                {
                    "metric": acc,
                    "epoch": epoch_id
                }, prefix="latest")
D
dongshuilong 已提交
221 222 223 224 225 226 227 228

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
D
dongshuilong 已提交
229
        eval_result = self.eval_func(self, epoch_id)
D
dongshuilong 已提交
230 231 232 233 234 235
        self.model.train()
        return eval_result

    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
236 237 238 239 240 241

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

242 243
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
G
gaotingquan 已提交
261 262 263 264 265 266 267 268 269 270 271

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)

D
dongshuilong 已提交
272 273
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
274 275
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
276 277 278
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
279
                    out = out["output"]
D
dongshuilong 已提交
280 281 282 283 284 285 286
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
287 288
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
289
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
290
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
291 292 293 294 295 296 297 298 299
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
300 301

        model.eval()
G
gaotingquan 已提交
302

303
        # for re-parameterization nets
H
HydrogenSulfate 已提交
304
        for layer in self.model.sublayers():
305 306 307
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
308

D
dongshuilong 已提交
309 310
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
311 312 313 314 315 316 317 318 319 320 321 322

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
323 324
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
325 326 327
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
328

G
gaotingquan 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    def _init_vdl(self):
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            return LogWriter(logdir=vdl_writer_path)
        return None

    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
366
        paddle.set_device(device)
G
gaotingquan 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                self.amp_level = "O1"

            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
                    True) and self.amp_level == "O2" and self.amp_eval == False:
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
                self.amp_eval = True

            # TODO(gaotingquan): to compatible with different versions of Paddle
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "0.0"]:
                if self.mode == "train":
                    self.model, self.optimizer = paddle.amp.decorate(
                        models=self.model,
                        optimizers=self.optimizer,
                        level=self.amp_level,
                        save_dtype='float32')
                elif self.amp_eval:
                    if self.amp_level == "O2":
                        msg = "The PaddlePaddle that installed not support FP16 evaluation in AMP O2. Please use PaddlePaddle version >= 2.3.0. Use FP32 evaluation instead and please notice the Eval Dataset output_fp16 should be 'False'."
                        logger.warning(msg)
                        self.amp_eval = False
                    else:
                        self.model, self.optimizer = paddle.amp.decorate(
                            models=self.model,
                            level=self.amp_level,
                            save_dtype='float32')
            # paddle version >= 2.3.0 or develop
            else:
                if self.mode == "train" or self.amp_eval:
                    self.model = paddle.amp.decorate(
                        models=self.model,
                        level=self.amp_level,
                        save_dtype='float32')

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')

G
gaotingquan 已提交
450 451
            self.amp_level = engine.config["AMP"].get("level", "O1").upper()

G
gaotingquan 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
            if self.mode == 'train' and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)

G
gaotingquan 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def _build_ema_model(self):
        if "EMA" in self.config and self.mode == "train":
            model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))
            return model_ema
        else:
            return None

    def _init_checkpoints(self, best_metric):
        if self.config["Global"].get("checkpoints", None) is not None:
            metric_info = init_model(self.config.Global, self.model,
                                     self.optimizer, self.train_loss_func,
                                     self.model_ema)
            if metric_info is not None:
                best_metric.update(metric_info)
        return best_metric

D
dongshuilong 已提交
490

W
dbg  
weishengyu 已提交
491
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
492 493 494 495
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
496
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
497 498 499 500 501 502 503 504 505 506 507 508
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
509 510
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
511
        else:
C
cuicheng01 已提交
512 513 514 515
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
531
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
532 533
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
534
            x = self.out_act(x)
D
dongshuilong 已提交
535
        return x