main.cc 7.5 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cmath>
#include <iostream>
#include <math.h>
#include <numeric>
#include <stdarg.h>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <vector>

#include "include/config_parser.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
L
lubin 已提交
29
#include "include/feature_extractor.h"
D
dongshuilong 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#include "json/json.h"

Json::Value RT_Config;

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string &path) {
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
}

static void MkDir(const std::string &path) {
  if (PathExists(path))
    return;
  int ret = 0;
  ret = mkdir(path.c_str(), 0755);
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string &path) {
  if (path.empty())
    return;
  if (PathExists(path))
    return;

  MkDirs(DirName(path));
  MkDir(path);
}

void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
                     std::vector<PPShiTu::ObjectResult> &im_result,
                     const int batch_size_det, const int max_det_num,
                     const bool run_benchmark, PPShiTu::ObjectDetector *det) {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(float(batch_imgs.size()) / batch_size_det);
  for (int idx = 0; idx < steps; idx++) {
    int left_image_cnt = batch_imgs.size() - idx * batch_size_det;
    if (left_image_cnt > batch_size_det) {
      left_image_cnt = batch_size_det;
    }
    // Store all detected result
    std::vector<PPShiTu::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, 50, 50, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
    }

    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      // std::vector<PPShiTu::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < min(bbox_num[i], max_det_num); j++) {
        PPShiTu::ObjectResult item = result[item_start_idx + j];
        if (item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
      }
      item_start_idx = item_start_idx + bbox_num[i];
    }

    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
}

void PrintResult(const std::string &image_path,
115
                 std::vector<PPShiTu::ObjectResult> &det_result) {
D
dongshuilong 已提交
116
  printf("%s:\n", image_path.c_str());
D
dongshuilong 已提交
117 118 119
  for (int i = 0; i < det_result.size(); ++i) {
    printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
           det_result[i].rect[0], det_result[i].rect[1], det_result[i].rect[2],
120 121
           det_result[i].rect[3], det_result[i].rec_result[0].score,
           det_result[i].rec_result[0].class_name.c_str());
D
dongshuilong 已提交
122 123 124 125 126 127 128 129 130 131 132
  }
}

int main(int argc, char **argv) {
  std::cout << "Usage: " << argv[0]
            << " [config_path](option) [image_dir](option)\n";
  if (argc < 2) {
    std::cout << "Usage: ./main det_runtime_config.json" << std::endl;
    return -1;
  }
  std::string config_path = argv[1];
133
  std::string img_dir = "";
D
dongshuilong 已提交
134 135

  if (argc >= 3) {
136
    img_dir = argv[2];
D
dongshuilong 已提交
137 138 139
  }
  // Parsing command-line
  PPShiTu::load_jsonf(config_path, RT_Config);
140 141
  if (RT_Config["Global"]["det_model_path"].as<std::string>().empty()) {
    std::cout << "Please set [det_model_path] in " << config_path << std::endl;
D
dongshuilong 已提交
142 143
    return -1;
  }
144 145 146 147 148

  if (!RT_Config["Global"]["infer_imgs_dir"].as<std::string>().empty() &&
      img_dir.empty()) {
    img_dir = RT_Config["Global"]["infer_imgs_dir"].as<std::string>();
  }
D
dongshuilong 已提交
149
  if (RT_Config["Global"]["infer_imgs"].as<std::string>().empty() &&
150
      img_dir.empty()) {
D
dongshuilong 已提交
151 152 153 154 155 156 157
    std::cout << "Please set [infer_imgs] in " << config_path
              << " Or use command: <" << argv[0] << " [shitu_config]"
              << " [image_dir]>" << std::endl;
    return -1;
  }
  // Load model and create a object detector
  PPShiTu::ObjectDetector det(
158
      RT_Config, RT_Config["Global"]["det_model_path"].as<std::string>(),
D
dongshuilong 已提交
159 160 161
      RT_Config["Global"]["cpu_num_threads"].as<int>(),
      RT_Config["Global"]["batch_size"].as<int>());
  // create rec model
L
lubin 已提交
162
  PPShiTu::FeatureExtract rec(RT_Config);
D
dongshuilong 已提交
163 164 165 166
  // Do inference on input image

  std::vector<PPShiTu::ObjectResult> det_result;
  std::vector<cv::Mat> batch_imgs;
L
lubin 已提交
167 168 169 170

  //for vector search
  std::vector<float> feature;
  std::vector<float> features;
D
dongshuilong 已提交
171 172
  double rec_time;
  if (!RT_Config["Global"]["infer_imgs"].as<std::string>().empty() ||
173
      !img_dir.empty()) {
D
dongshuilong 已提交
174
    std::vector<std::string> all_img_paths;
D
dongshuilong 已提交
175
    std::vector<cv::String> cv_all_img_paths;
D
dongshuilong 已提交
176 177 178 179 180 181 182 183 184
    if (!RT_Config["Global"]["infer_imgs"].as<std::string>().empty()) {
      all_img_paths.push_back(
          RT_Config["Global"]["infer_imgs"].as<std::string>());
      if (RT_Config["Global"]["batch_size"].as<int>() > 1) {
        std::cout << "batch_size_det should be 1, when set `image_file`."
                  << std::endl;
        return -1;
      }
    } else {
185
      cv::glob(img_dir,
D
dongshuilong 已提交
186 187 188 189 190 191
               cv_all_img_paths);
      for (const auto &img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
    }
    for (int i = 0; i < all_img_paths.size(); ++i) {
D
dongshuilong 已提交
192
      std::string img_path = all_img_paths[i];
D
dongshuilong 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
      cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << img_path
                  << "\n";
        exit(-1);
      }
      cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
      batch_imgs.push_back(srcimg);
      DetPredictImage(
          batch_imgs, det_result, RT_Config["Global"]["batch_size"].as<int>(),
          RT_Config["Global"]["max_det_results"].as<int>(), false, &det);

      // add the whole image for recognition to improve recall
      PPShiTu::ObjectResult result_whole_img = {
207
          {0, 0, srcimg.cols, srcimg.rows}, 0, 1.0};
D
dongshuilong 已提交
208 209 210 211 212 213 214 215
      det_result.push_back(result_whole_img);

      // get rec result
      for (int j = 0; j < det_result.size(); ++j) {
        int w = det_result[j].rect[2] - det_result[j].rect[0];
        int h = det_result[j].rect[3] - det_result[j].rect[1];
        cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
        cv::Mat crop_img = srcimg(rect);
L
lubin 已提交
216 217
        rec.RunRecModel(crop_img, rec_time, feature);
        features.insert(features.end(), feature.begin(), feature.end());
D
dongshuilong 已提交
218
      }
L
lubin 已提交
219 220

      std::cout << "feature len is:  " << features.size() << std::endl;
221
      // rec nms
L
lubin 已提交
222 223 224
      // PPShiTu::nms(det_result,
      //              RT_Config["Global"]["rec_nms_thresold"].as<float>(), true);
      // PrintResult(img_path, det_result);
D
dongshuilong 已提交
225 226 227 228 229 230
      batch_imgs.clear();
      det_result.clear();
    }
  }
  return 0;
}