Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
96e3a208
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
96e3a208
编写于
1月 24, 2022
作者:
D
dongshuilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix ppshitu_lite bugs
上级
4639b6f1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
57 addition
and
54 deletion
+57
-54
deploy/lite_shitu/Makefile
deploy/lite_shitu/Makefile
+3
-3
deploy/lite_shitu/include/object_detector.h
deploy/lite_shitu/include/object_detector.h
+2
-2
deploy/lite_shitu/include/recognition.h
deploy/lite_shitu/include/recognition.h
+30
-28
deploy/lite_shitu/src/main.cc
deploy/lite_shitu/src/main.cc
+5
-5
deploy/lite_shitu/src/picodet_postprocess.cc
deploy/lite_shitu/src/picodet_postprocess.cc
+1
-0
deploy/lite_shitu/src/recognition.cc
deploy/lite_shitu/src/recognition.cc
+16
-16
未找到文件。
deploy/lite_shitu/Makefile
浏览文件 @
96e3a208
...
...
@@ -53,8 +53,8 @@ LOCAL_OBJS=$(patsubst %.cpp, %.o, $(patsubst %.cc, %.o, $(LOCAL_SRCS)))
JSON_OBJS
=
json_reader.o json_value.o json_writer.o
main
:
$(LOCAL_OBJS) $(JSON_OBJS) fetch_opencv
$(CC)
$(SYSROOT_LINK)
$(CXXFLAGS_LINK)
$(LOCAL_OBJS)
$(JSON_OBJS)
-o
main
$(CXX_LIBS)
$(LDFLAGS)
pp_shitu
:
$(LOCAL_OBJS) $(JSON_OBJS) fetch_opencv
$(CC)
$(SYSROOT_LINK)
$(CXXFLAGS_LINK)
$(LOCAL_OBJS)
$(JSON_OBJS)
-o
pp_shitu
$(CXX_LIBS)
$(LDFLAGS)
fetch_opencv
:
@
test
-d
${THIRD_PARTY_DIR}
||
mkdir
${THIRD_PARTY_DIR}
...
...
@@ -87,4 +87,4 @@ $(JSON_OBJS): %.o: ${THIRD_PARTY_DIR}/jsoncpp_code/%.cpp fetch_json_code
.PHONY
:
clean fetch_opencv fetch_json_code
clean
:
rm
-rf
$(LOCAL_OBJS)
$(JSON_OBJS)
rm
-f
main
rm
-f
pp_shitu
deploy/lite_shitu/include/object_detector.h
浏览文件 @
96e3a208
...
...
@@ -19,6 +19,7 @@
#include <string>
#include <utility>
#include <vector>
#include <stdlib.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
...
...
@@ -58,7 +59,7 @@ class ObjectDetector {
printf
(
"before object detector
\n
"
);
if
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
().
empty
()){
std
::
cout
<<
"Please set [det_model_path] in config file"
<<
std
::
endl
;
return
-
1
;
exit
(
-
1
)
;
}
LoadModel
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
(),
cpu_threads
);
printf
(
"create object detector
\n
"
);
}
...
...
@@ -68,7 +69,6 @@ class ObjectDetector {
// Run predictor
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>&
imgs
,
const
double
threshold
=
0.5
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
std
::
vector
<
PPShiTu
::
ObjectResult
>*
result
=
nullptr
,
...
...
deploy/lite_shitu/include/recognition.h
浏览文件 @
96e3a208
...
...
@@ -20,6 +20,7 @@
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <stdlib.h>
#include <sys/time.h>
#include <vector>
...
...
@@ -37,24 +38,24 @@ struct RESULT {
class
Recognition
{
public:
void
Recognition
(
const
Json
::
Value
&
config_file
)
{
explicit
Recognition
(
const
Json
::
Value
&
config_file
)
{
MobileConfig
config
;
if
(
config_file
[
"Global"
][
"rec_model_path"
].
as
<
std
::
string
>
().
empty
())
{
std
::
cout
<<
"Please set [rec_model_path] in config file"
<<
std
::
endl
;
return
-
1
;
exit
(
-
1
)
;
}
config
.
set_model_from_file
(
config_file
[
"Global"
][
"rec_model_path"
].
as
<
std
::
string
>
());
predictor
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
this
->
predictor
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
if
(
config_file
[
"Global"
][
"rec_label_path"
].
as
<
std
::
string
>
().
empty
())
{
std
::
cout
<<
"Please set [rec_label_path] in config file"
<<
std
::
endl
;
return
-
1
;
exit
(
-
1
)
;
}
LoadLabel
(
config_file
[
"Global"
][
"rec_label_path"
].
as
<
std
::
string
>
());
SetPreProcessParam
(
config_file
[
"RecPreProcess"
][
"transform_ops"
]);
if
(
!
config_file
[
"Global"
]
[
"return_k"
].
as
<
int
>
().
empty
(
))
topk
=
config_file
[
"Global"
][
"return_k"
].
as
<
int
>
();
if
(
!
config_file
[
"Global"
]
.
isMember
(
"return_k"
))
t
his
->
t
opk
=
config_file
[
"Global"
][
"return_k"
].
as
<
int
>
();
}
void
LoadLabel
(
std
::
string
path
)
{
...
...
@@ -68,7 +69,7 @@ public:
if
(
pos
!=
std
::
string
::
npos
)
{
line
=
line
.
substr
(
pos
);
}
label_list
.
push_back
(
line
);
this
->
label_list
.
push_back
(
line
);
}
file
.
clear
();
file
.
close
();
...
...
@@ -78,33 +79,34 @@ public:
for
(
const
auto
&
item
:
config_file
)
{
auto
op_name
=
item
[
"type"
].
as
<
std
::
string
>
();
if
(
op_name
==
"ResizeImage"
)
{
size
=
item
[
"size"
].
as
<
int
>
();
this
->
size
=
item
[
"size"
].
as
<
int
>
();
}
else
if
(
op_name
==
"NormalizeImage"
)
{
mean
.
clear
();
std
.
clear
();
this
->
mean
.
clear
();
this
->
std
.
clear
();
for
(
auto
tmp
:
item
[
"mean"
])
{
mean
.
emplace_back
(
tmp
.
as
<
float
>
());
this
->
mean
.
emplace_back
(
tmp
.
as
<
float
>
());
}
for
(
auto
tmp
:
item
[
"std"
])
{
std
.
emplace_back
(
1
/
tmp
.
as
<
float
>
());
this
->
std
.
emplace_back
(
1
/
tmp
.
as
<
float
>
());
}
scale
=
item
[
"scale"
].
as
<
double
>
();
this
->
scale
=
item
[
"scale"
].
as
<
double
>
();
}
}
}
std
::
vector
<
RESULT
>
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
con
st_time
);
std
::
vector
<
RESULT
>
PostProcess
(
const
float
*
output_data
,
int
output_size
,
cv
::
Mat
&
output_image
);
cv
::
Mat
ResizeImage
(
const
cv
::
Mat
&
img
);
void
NeonMeanScale
(
const
float
*
din
,
float
*
dout
,
int
size
);
std
::
vector
<
RESULT
>
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
co
st_time
);
std
::
vector
<
RESULT
>
PostProcess
(
const
float
*
output_data
,
int
output_size
,
cv
::
Mat
&
output_image
);
cv
::
Mat
ResizeImage
(
const
cv
::
Mat
&
img
);
void
NeonMeanScale
(
const
float
*
din
,
float
*
dout
,
int
size
);
private:
std
::
shared_ptr
<
PaddlePredictor
>
predictor
;
std
::
vector
<
std
::
string
>
label_list
;
std
::
vector
<
float
>
mean
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
std
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
double
scale
=
0.00392157
;
float
size
=
224
;
int
topk
=
5
;
}
}
private:
std
::
shared_ptr
<
PaddlePredictor
>
predictor
;
std
::
vector
<
std
::
string
>
label_list
;
std
::
vector
<
float
>
mean
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
std
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
double
scale
=
0.00392157
;
float
size
=
224
;
int
topk
=
5
;
};
}
// namespace PPShiTu
deploy/lite_shitu/src/main.cc
浏览文件 @
96e3a208
...
...
@@ -146,12 +146,12 @@ void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
void
PrintResult
(
const
std
::
string
&
image_path
,
std
::
vector
<
PPShiTu
::
ObjectResult
>
&
det_result
,
std
::
vector
<
std
::
vector
<
PPShiTu
::
RESULT
>>
&
rec_results
)
{
printf
(
"%s:
\n
"
,
im
g
_path
.
c_str
());
printf
(
"%s:
\n
"
,
im
age
_path
.
c_str
());
for
(
int
i
=
0
;
i
<
det_result
.
size
();
++
i
)
{
printf
(
"
\t
result%d: bbox[%d, %d, %d, %d], score: %f, label: %s
\n
"
,
i
,
det_result
[
i
].
rect
[
0
],
det_result
[
i
].
rect
[
1
],
det_result
[
i
].
rect
[
2
],
det_result
[
t
].
rect
[
3
],
rec_results
[
i
].
score
,
rec_results
[
i
].
class_name
.
c_str
());
det_result
[
i
].
rect
[
3
],
rec_results
[
i
][
0
].
score
,
rec_results
[
i
]
[
0
]
.
class_name
.
c_str
());
}
}
...
...
@@ -207,7 +207,7 @@ int main(int argc, char **argv) {
if
(
!
RT_Config
[
"Global"
][
"infer_imgs"
].
as
<
std
::
string
>
().
empty
()
||
!
RT_Config
[
"Global"
][
"infer_imgs_dir"
].
as
<
std
::
string
>
().
empty
())
{
std
::
vector
<
std
::
string
>
all_img_paths
;
std
::
vector
<
cv
::
s
tring
>
cv_all_img_paths
;
std
::
vector
<
cv
::
S
tring
>
cv_all_img_paths
;
if
(
!
RT_Config
[
"Global"
][
"infer_imgs"
].
as
<
std
::
string
>
().
empty
())
{
all_img_paths
.
push_back
(
RT_Config
[
"Global"
][
"infer_imgs"
].
as
<
std
::
string
>
());
...
...
@@ -224,7 +224,7 @@ int main(int argc, char **argv) {
}
}
for
(
int
i
=
0
;
i
<
all_img_paths
.
size
();
++
i
)
{
std
::
string
img_path
=
img_files_list
[
idx
];
std
::
string
img_path
=
all_img_paths
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
img_path
,
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
img_path
...
...
deploy/lite_shitu/src/picodet_postprocess.cc
浏览文件 @
96e3a208
...
...
@@ -16,6 +16,7 @@
// https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
#include "include/picodet_postprocess.h"
#include <cmath>
namespace
PPShiTu
{
...
...
deploy/lite_shitu/src/recognition.cc
浏览文件 @
96e3a208
...
...
@@ -16,7 +16,7 @@
namespace
PPShiTu
{
std
::
vector
<
RESULT
>
Recognition
::
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
co
n
st_time
)
{
double
&
cost_time
)
{
// Read img
cv
::
Mat
resize_image
=
ResizeImage
(
img
);
...
...
@@ -25,7 +25,7 @@ std::vector<RESULT> Recognition::RunRecModel(const cv::Mat &img,
resize_image
.
convertTo
(
img_fp
,
CV_32FC3
,
scale
);
// Prepare input data from image
std
::
unique_ptr
<
Tensor
>
input_tensor
(
std
::
move
(
predictor
->
GetInput
(
0
)));
std
::
unique_ptr
<
Tensor
>
input_tensor
(
std
::
move
(
this
->
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
img_fp
.
rows
,
img_fp
.
cols
});
auto
*
data0
=
input_tensor
->
mutable_data
<
float
>
();
...
...
@@ -34,11 +34,11 @@ std::vector<RESULT> Recognition::RunRecModel(const cv::Mat &img,
auto
start
=
std
::
chrono
::
system_clock
::
now
();
// Run predictor
predictor
->
Run
();
this
->
predictor
->
Run
();
// Get output and post process
std
::
unique_ptr
<
const
Tensor
>
output_tensor
(
std
::
move
(
predictor
->
GetOutput
(
0
)));
std
::
move
(
this
->
predictor
->
GetOutput
(
0
)));
auto
*
output_data
=
output_tensor
->
data
<
float
>
();
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
...
...
@@ -59,7 +59,7 @@ std::vector<RESULT> Recognition::RunRecModel(const cv::Mat &img,
void
Recognition
::
NeonMeanScale
(
const
float
*
din
,
float
*
dout
,
int
size
)
{
if
(
mean
.
size
()
!=
3
||
scale
.
size
()
!=
3
)
{
if
(
this
->
mean
.
size
()
!=
3
||
this
->
std
.
size
()
!=
3
)
{
std
::
cerr
<<
"[ERROR] mean or scale size must equal to 3
\n
"
;
exit
(
1
);
}
...
...
@@ -93,31 +93,31 @@ void Recognition::NeonMeanScale(const float *din, float *dout, int size) {
dout_c2
+=
4
;
}
for
(;
i
<
size
;
i
++
)
{
*
(
dout_c0
++
)
=
(
*
(
din
++
)
-
mean
[
0
])
*
std
[
0
];
*
(
dout_c1
++
)
=
(
*
(
din
++
)
-
mean
[
1
])
*
std
[
1
];
*
(
dout_c2
++
)
=
(
*
(
din
++
)
-
mean
[
2
])
*
std
[
2
];
*
(
dout_c0
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
0
])
*
this
->
std
[
0
];
*
(
dout_c1
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
1
])
*
this
->
std
[
1
];
*
(
dout_c2
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
2
])
*
this
->
std
[
2
];
}
}
cv
::
Mat
Recognition
::
ResizeImage
(
const
cv
::
Mat
&
img
)
{
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
size
,
size
));
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
this
->
size
,
this
->
size
));
return
resize_img
;
}
std
::
vector
<
RESULT
>
Recognition
::
PostProcess
(
const
float
*
output_data
,
int
output_size
,
cv
::
Mat
&
output_image
)
{
int
max_indices
[
topk
];
double
max_scores
[
topk
];
for
(
int
i
=
0
;
i
<
topk
;
i
++
)
{
int
max_indices
[
t
his
->
t
opk
];
double
max_scores
[
t
his
->
t
opk
];
for
(
int
i
=
0
;
i
<
t
his
->
t
opk
;
i
++
)
{
max_indices
[
i
]
=
0
;
max_scores
[
i
]
=
0
;
}
for
(
int
i
=
0
;
i
<
output_size
;
i
++
)
{
float
score
=
output_data
[
i
];
int
index
=
i
;
for
(
int
j
=
0
;
j
<
topk
;
j
++
)
{
for
(
int
j
=
0
;
j
<
t
his
->
t
opk
;
j
++
)
{
if
(
score
>
max_scores
[
j
])
{
index
+=
max_indices
[
j
];
max_indices
[
j
]
=
index
-
max_indices
[
j
];
...
...
@@ -129,11 +129,11 @@ std::vector<RESULT> Recognition::PostProcess(const float *output_data,
}
}
std
::
vector
<
RESULT
>
results
(
topk
);
std
::
vector
<
RESULT
>
results
(
t
his
->
t
opk
);
for
(
int
i
=
0
;
i
<
results
.
size
();
i
++
)
{
results
[
i
].
class_name
=
"Unknown"
;
if
(
max_indices
[
i
]
>=
0
&&
max_indices
[
i
]
<
label_list
.
size
())
{
results
[
i
].
class_name
=
label_list
[
max_indices
[
i
]];
if
(
max_indices
[
i
]
>=
0
&&
max_indices
[
i
]
<
this
->
label_list
.
size
())
{
results
[
i
].
class_name
=
this
->
label_list
[
max_indices
[
i
]];
}
results
[
i
].
score
=
max_scores
[
i
];
results
[
i
].
class_id
=
max_indices
[
i
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录