main.cc 8.9 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cmath>
#include <iostream>
#include <math.h>
#include <numeric>
#include <stdarg.h>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <vector>

#include "include/config_parser.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
#include "include/recognition.h"
#include "json/json.h"

Json::Value RT_Config;

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string &path) {
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
}

static void MkDir(const std::string &path) {
  if (PathExists(path))
    return;
  int ret = 0;
  ret = mkdir(path.c_str(), 0755);
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string &path) {
  if (path.empty())
    return;
  if (PathExists(path))
    return;

  MkDirs(DirName(path));
  MkDir(path);
}

void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
                     std::vector<PPShiTu::ObjectResult> &im_result,
                     const int batch_size_det, const int max_det_num,
                     const bool run_benchmark, PPShiTu::ObjectDetector *det) {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(float(batch_imgs.size()) / batch_size_det);
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = batch_imgs.size() - idx * batch_size_det;
    if (left_image_cnt > batch_size_det) {
      left_image_cnt = batch_size_det;
    }
    /* for (int bs = 0; bs < left_image_cnt; bs++) { */
    /* std::string image_file_path = all_img_paths.at(idx * batch_size_det +
     * bs); */
    /* cv::Mat im = cv::imread(image_file_path, 1); */
    /* batch_imgs.insert(batch_imgs.end(), im); */
    /* } */
    // Store all detected result
    std::vector<PPShiTu::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, 50, 50, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
    }

    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      // std::vector<PPShiTu::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < min(bbox_num[i], max_det_num); j++) {
        PPShiTu::ObjectResult item = result[item_start_idx + j];
        if (item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
        /* if (item.rect.size() > 6) { */
        /*   is_rbox = true; */
        /*   printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
         */
        /*          item.class_id, */
        /*          item.confidence, */
        /*          item.rect[0], */
        /*          item.rect[1], */
        /*          item.rect[2], */
        /*          item.rect[3], */
        /*          item.rect[4], */
        /*          item.rect[5], */
        /*          item.rect[6], */
        /*          item.rect[7]); */
        /* } else { */
        /*   printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", */
        /*          item.class_id, */
        /*          item.confidence, */
        /*          item.rect[0], */
        /*          item.rect[1], */
        /*          item.rect[2], */
        /*          item.rect[3]); */
        /* } */
      }
      /* std::cout << all_img_paths.at(idx * batch_size_det + i) */
      /* << " The number of detected box: " << detect_num << std::endl; */
      item_start_idx = item_start_idx + bbox_num[i];
    }

    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
}

void PrintResult(const std::string &image_path,
                 std::vector<PPShiTu::ObjectResult> &det_result,
                 std::vector<std::vector<PPShiTu::RESULT>> &rec_results) {
D
dongshuilong 已提交
149
  printf("%s:\n", image_path.c_str());
D
dongshuilong 已提交
150 151 152
  for (int i = 0; i < det_result.size(); ++i) {
    printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
           det_result[i].rect[0], det_result[i].rect[1], det_result[i].rect[2],
D
dongshuilong 已提交
153 154
           det_result[i].rect[3], rec_results[i][0].score,
           rec_results[i][0].class_name.c_str());
D
dongshuilong 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  }
}

int main(int argc, char **argv) {
  std::cout << "Usage: " << argv[0]
            << " [config_path](option) [image_dir](option)\n";
  if (argc < 2) {
    std::cout << "Usage: ./main det_runtime_config.json" << std::endl;
    return -1;
  }
  std::string config_path = argv[1];
  std::string img_path = "";

  if (argc >= 3) {
    img_path = argv[2];
  }
  // Parsing command-line
  PPShiTu::load_jsonf(config_path, RT_Config);
  if (RT_Config["Global"]["det_inference_model_dir"]
          .as<std::string>()
          .empty()) {
    std::cout << "Please set [det_inference_model_dir] in " << config_path
              << std::endl;
    return -1;
  }
  if (RT_Config["Global"]["infer_imgs"].as<std::string>().empty() &&
      img_path.empty()) {
    std::cout << "Please set [infer_imgs] in " << config_path
              << " Or use command: <" << argv[0] << " [shitu_config]"
              << " [image_dir]>" << std::endl;
    return -1;
  }
  if (!img_path.empty()) {
    std::cout << "Use image_dir in command line overide the path in config file"
              << std::endl;
    RT_Config["Global"]["infer_imgs_dir"] = img_path;
    RT_Config["Global"]["infer_imgs"] = "";
  }
  // Load model and create a object detector
  PPShiTu::ObjectDetector det(
      RT_Config,
      RT_Config["Global"]["det_inference_model_dir"].as<std::string>(),
      RT_Config["Global"]["cpu_num_threads"].as<int>(),
      RT_Config["Global"]["batch_size"].as<int>());
  // create rec model
  PPShiTu::Recognition rec(RT_Config);
  // Do inference on input image

  std::vector<PPShiTu::ObjectResult> det_result;
  std::vector<cv::Mat> batch_imgs;
  std::vector<std::vector<PPShiTu::RESULT>> rec_results;
  double rec_time;
  if (!RT_Config["Global"]["infer_imgs"].as<std::string>().empty() ||
      !RT_Config["Global"]["infer_imgs_dir"].as<std::string>().empty()) {
    std::vector<std::string> all_img_paths;
D
dongshuilong 已提交
210
    std::vector<cv::String> cv_all_img_paths;
D
dongshuilong 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    if (!RT_Config["Global"]["infer_imgs"].as<std::string>().empty()) {
      all_img_paths.push_back(
          RT_Config["Global"]["infer_imgs"].as<std::string>());
      if (RT_Config["Global"]["batch_size"].as<int>() > 1) {
        std::cout << "batch_size_det should be 1, when set `image_file`."
                  << std::endl;
        return -1;
      }
    } else {
      cv::glob(RT_Config["Global"]["infer_imgs_dir"].as<std::string>(),
               cv_all_img_paths);
      for (const auto &img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
    }
    for (int i = 0; i < all_img_paths.size(); ++i) {
D
dongshuilong 已提交
227
      std::string img_path = all_img_paths[i];
D
dongshuilong 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << img_path
                  << "\n";
        exit(-1);
      }
      cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
      batch_imgs.push_back(srcimg);
      DetPredictImage(
          batch_imgs, det_result, RT_Config["Global"]["batch_size"].as<int>(),
          RT_Config["Global"]["max_det_results"].as<int>(), false, &det);

      // add the whole image for recognition to improve recall
      PPShiTu::ObjectResult result_whole_img = {
          {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
      det_result.push_back(result_whole_img);

      // get rec result
      for (int j = 0; j < det_result.size(); ++j) {
        int w = det_result[j].rect[2] - det_result[j].rect[0];
        int h = det_result[j].rect[3] - det_result[j].rect[1];
        cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
        cv::Mat crop_img = srcimg(rect);
        std::vector<PPShiTu::RESULT> result =
            rec.RunRecModel(crop_img, rec_time);
        rec_results.push_back(result);
      }
      PrintResult(img_path, det_result, rec_results);

      batch_imgs.clear();
      det_result.clear();
      rec_results.clear();
    }
  }
  return 0;
}