pp_lcnet.py 17.0 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
C
cuicheng01 已提交
20
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
C
cuicheng01 已提交
21 22 23 24 25 26
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
C
cuicheng01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    "PPLCNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
    "PPLCNet_x0_35":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
    "PPLCNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
    "PPLCNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
    "PPLCNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
    "PPLCNet_x1_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
    "PPLCNet_x2_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
    "PPLCNet_x2_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
C
cuicheng01 已提交
43 44
}

45 46 47 48
MODEL_STAGES_PATTERN = {
    "PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"]
}

C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
__all__ = list(MODEL_URLS.keys())

# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
# k: kernel_size
# in_c: input channel number in depthwise block
# out_c: output channel number in depthwise block
# s: stride in depthwise block
# use_se: whether to use SE block

NET_CONFIG = {
    "blocks2":
    #k, in_c, out_c, s, use_se
    [[3, 16, 32, 1, False]],
    "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
    "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
    "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
    "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
C
cuicheng01 已提交
86 87
                 num_groups=1,
                 lr_mult=1.0):
C
cuicheng01 已提交
88 89 90 91 92 93 94 95 96
        super().__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
C
cuicheng01 已提交
97 98
            weight_attr=ParamAttr(
                initializer=KaimingNormal(), learning_rate=lr_mult),
C
cuicheng01 已提交
99 100
            bias_attr=False)

C
cuicheng01 已提交
101
        self.bn = BatchNorm2D(
C
cuicheng01 已提交
102
            num_filters,
C
cuicheng01 已提交
103 104 105 106
            weight_attr=ParamAttr(
                regularizer=L2Decay(0.0), learning_rate=lr_mult),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.0), learning_rate=lr_mult))
C
cuicheng01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.hardswish(x)
        return x


class DepthwiseSeparable(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 dw_size=3,
C
cuicheng01 已提交
122 123
                 use_se=False,
                 lr_mult=1.0):
C
cuicheng01 已提交
124 125 126 127 128 129 130
        super().__init__()
        self.use_se = use_se
        self.dw_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=dw_size,
            stride=stride,
C
cuicheng01 已提交
131 132
            num_groups=num_channels,
            lr_mult=lr_mult)
C
cuicheng01 已提交
133
        if use_se:
C
cuicheng01 已提交
134
            self.se = SEModule(num_channels, lr_mult=lr_mult)
C
cuicheng01 已提交
135 136 137 138
        self.pw_conv = ConvBNLayer(
            num_channels=num_channels,
            filter_size=1,
            num_filters=num_filters,
C
cuicheng01 已提交
139 140
            stride=1,
            lr_mult=lr_mult)
C
cuicheng01 已提交
141 142 143 144 145 146 147 148 149 150

    def forward(self, x):
        x = self.dw_conv(x)
        if self.use_se:
            x = self.se(x)
        x = self.pw_conv(x)
        return x


class SEModule(TheseusLayer):
C
cuicheng01 已提交
151
    def __init__(self, channel, reduction=4, lr_mult=1.0):
C
cuicheng01 已提交
152 153 154 155 156 157 158
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
159 160 161
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
162 163 164 165 166 167
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
168 169 170
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x


C
cuicheng01 已提交
184
class PPLCNet(TheseusLayer):
C
cuicheng01 已提交
185
    def __init__(self,
186
                 stages_pattern,
C
cuicheng01 已提交
187 188 189
                 scale=1.0,
                 class_num=1000,
                 dropout_prob=0.2,
190
                 class_expand=1280,
C
cuicheng01 已提交
191 192 193
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                 stride_list=[2, 2, 2, 2, 2],
                 use_last_conv=True,
194 195
                 return_patterns=None,
                 return_stages=None):
C
cuicheng01 已提交
196 197 198
        super().__init__()
        self.scale = scale
        self.class_expand = class_expand
C
cuicheng01 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self.lr_mult_list = lr_mult_list
        self.use_last_conv = use_last_conv
        self.stride_list = stride_list
        self.net_config = NET_CONFIG
        if isinstance(self.lr_mult_list, str):
            self.lr_mult_list = eval(self.lr_mult_list)

        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
        assert len(self.lr_mult_list
                   ) == 6, "lr_mult_list length should be 6 but got {}".format(
                       len(self.lr_mult_list))

        assert isinstance(self.stride_list, (
            list, tuple
        )), "stride_list should be in (list, tuple) but got {}".format(
            type(self.stride_list))
        assert len(self.stride_list
                   ) == 5, "stride_list length should be 5 but got {}".format(
                       len(self.stride_list))
C
cuicheng01 已提交
221

C
cuicheng01 已提交
222
        for i, stride in enumerate(stride_list[1:]):
C
cuicheng01 已提交
223
            self.net_config["blocks{}".format(i + 3)][0][3] = stride
C
cuicheng01 已提交
224 225 226 227
        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            num_filters=make_divisible(16 * scale),
C
cuicheng01 已提交
228 229
            stride=stride_list[0],
            lr_mult=self.lr_mult_list[0])
C
cuicheng01 已提交
230

C
cuicheng01 已提交
231
        self.blocks2 = nn.Sequential(*[
C
cuicheng01 已提交
232 233 234 235 236
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
237 238
                use_se=se,
                lr_mult=self.lr_mult_list[1])
C
cuicheng01 已提交
239 240
            for i, (k, in_c, out_c, s, se
                    ) in enumerate(self.net_config["blocks2"])
C
cuicheng01 已提交
241 242
        ])

C
cuicheng01 已提交
243
        self.blocks3 = nn.Sequential(*[
C
cuicheng01 已提交
244 245 246 247 248
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
249 250
                use_se=se,
                lr_mult=self.lr_mult_list[2])
C
cuicheng01 已提交
251 252
            for i, (k, in_c, out_c, s, se
                    ) in enumerate(self.net_config["blocks3"])
C
cuicheng01 已提交
253 254
        ])

C
cuicheng01 已提交
255
        self.blocks4 = nn.Sequential(*[
C
cuicheng01 已提交
256 257 258 259 260
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
261 262
                use_se=se,
                lr_mult=self.lr_mult_list[3])
C
cuicheng01 已提交
263 264
            for i, (k, in_c, out_c, s, se
                    ) in enumerate(self.net_config["blocks4"])
C
cuicheng01 已提交
265 266
        ])

C
cuicheng01 已提交
267
        self.blocks5 = nn.Sequential(*[
C
cuicheng01 已提交
268 269 270 271 272
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
273 274
                use_se=se,
                lr_mult=self.lr_mult_list[4])
C
cuicheng01 已提交
275 276
            for i, (k, in_c, out_c, s, se
                    ) in enumerate(self.net_config["blocks5"])
C
cuicheng01 已提交
277 278
        ])

C
cuicheng01 已提交
279
        self.blocks6 = nn.Sequential(*[
C
cuicheng01 已提交
280 281 282 283 284
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
285 286
                use_se=se,
                lr_mult=self.lr_mult_list[5])
C
cuicheng01 已提交
287 288
            for i, (k, in_c, out_c, s, se
                    ) in enumerate(self.net_config["blocks6"])
C
cuicheng01 已提交
289 290 291
        ])

        self.avg_pool = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
292 293
        if self.use_last_conv:
            self.last_conv = Conv2D(
C
cuicheng01 已提交
294 295
                in_channels=make_divisible(self.net_config["blocks6"][-1][2] *
                                           scale),
C
cuicheng01 已提交
296 297 298 299 300 301 302 303 304
                out_channels=self.class_expand,
                kernel_size=1,
                stride=1,
                padding=0,
                bias_attr=False)
            self.hardswish = nn.Hardswish()
            self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        else:
            self.last_conv = None
C
cuicheng01 已提交
305
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
C
cuicheng01 已提交
306 307 308
        self.fc = Linear(
            self.class_expand if self.use_last_conv else
            make_divisible(self.net_config["blocks6"][-1][2]), class_num)
C
cuicheng01 已提交
309

310 311 312 313
        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
314

C
cuicheng01 已提交
315 316 317 318 319 320 321 322 323 324
    def forward(self, x):
        x = self.conv1(x)

        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = self.blocks5(x)
        x = self.blocks6(x)

        x = self.avg_pool(x)
C
cuicheng01 已提交
325 326 327 328
        if self.last_conv is not None:
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
C
cuicheng01 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


C
cuicheng01 已提交
347
def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
348
    """
C
cuicheng01 已提交
349
    PPLCNet_x0_25
C
cuicheng01 已提交
350 351 352 353 354
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
355
        model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args.
C
cuicheng01 已提交
356
    """
357 358
    model = PPLCNet(
        scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
359
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld)
C
cuicheng01 已提交
360 361 362
    return model


C
cuicheng01 已提交
363
def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
364
    """
C
cuicheng01 已提交
365
    PPLCNet_x0_35
C
cuicheng01 已提交
366 367 368 369 370
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
371
        model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args.
C
cuicheng01 已提交
372
    """
373 374
    model = PPLCNet(
        scale=0.35, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
375
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld)
C
cuicheng01 已提交
376 377 378
    return model


C
cuicheng01 已提交
379
def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
380
    """
C
cuicheng01 已提交
381
    PPLCNet_x0_5
C
cuicheng01 已提交
382 383 384 385 386
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
387
        model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args.
C
cuicheng01 已提交
388
    """
389 390
    model = PPLCNet(
        scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
391
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld)
C
cuicheng01 已提交
392 393 394
    return model


C
cuicheng01 已提交
395
def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
396
    """
C
cuicheng01 已提交
397
    PPLCNet_x0_75
C
cuicheng01 已提交
398 399 400 401 402
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
403
        model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args.
C
cuicheng01 已提交
404
    """
405 406
    model = PPLCNet(
        scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
407
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld)
C
cuicheng01 已提交
408 409 410
    return model


C
cuicheng01 已提交
411
def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
412
    """
C
cuicheng01 已提交
413
    PPLCNet_x1_0
C
cuicheng01 已提交
414 415 416 417 418
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
419
        model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args.
C
cuicheng01 已提交
420
    """
421 422
    model = PPLCNet(
        scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
423
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld)
C
cuicheng01 已提交
424 425 426
    return model


C
cuicheng01 已提交
427
def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
428
    """
C
cuicheng01 已提交
429
    PPLCNet_x1_5
C
cuicheng01 已提交
430 431 432 433 434
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
435
        model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args.
C
cuicheng01 已提交
436
    """
437 438
    model = PPLCNet(
        scale=1.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
439
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld)
C
cuicheng01 已提交
440 441 442
    return model


C
cuicheng01 已提交
443
def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
444
    """
C
cuicheng01 已提交
445
    PPLCNet_x2_0
C
cuicheng01 已提交
446 447 448 449 450
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
451
        model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args.
C
cuicheng01 已提交
452
    """
453 454
    model = PPLCNet(
        scale=2.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
455
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld)
C
cuicheng01 已提交
456 457 458
    return model


C
cuicheng01 已提交
459
def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
460
    """
C
cuicheng01 已提交
461
    PPLCNet_x2_5
C
cuicheng01 已提交
462 463 464 465 466
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
467
        model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args.
C
cuicheng01 已提交
468
    """
469 470
    model = PPLCNet(
        scale=2.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
471
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld)
C
cuicheng01 已提交
472
    return model