pp_lcnet.py 13.8 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
C
cuicheng01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    "PPLCNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
    "PPLCNet_x0_35":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
    "PPLCNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
    "PPLCNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
    "PPLCNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
    "PPLCNet_x1_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
    "PPLCNet_x2_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
    "PPLCNet_x2_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
C
cuicheng01 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

__all__ = list(MODEL_URLS.keys())

# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
# k: kernel_size
# in_c: input channel number in depthwise block
# out_c: output channel number in depthwise block
# s: stride in depthwise block
# use_se: whether to use SE block

NET_CONFIG = {
    "blocks2":
    #k, in_c, out_c, s, use_se
    [[3, 16, 32, 1, False]],
    "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
    "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
    "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
    "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 num_groups=1):
        super().__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
            weight_attr=ParamAttr(initializer=KaimingNormal()),
            bias_attr=False)

        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.hardswish(x)
        return x


class DepthwiseSeparable(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 dw_size=3,
                 use_se=False):
        super().__init__()
        self.use_se = use_se
        self.dw_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=dw_size,
            stride=stride,
            num_groups=num_channels)
        if use_se:
            self.se = SEModule(num_channels)
        self.pw_conv = ConvBNLayer(
            num_channels=num_channels,
            filter_size=1,
            num_filters=num_filters,
            stride=1)

    def forward(self, x):
        x = self.dw_conv(x)
        if self.use_se:
            x = self.se(x)
        x = self.pw_conv(x)
        return x


class SEModule(TheseusLayer):
    def __init__(self, channel, reduction=4):
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
            padding=0)
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
            padding=0)
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x


C
cuicheng01 已提交
169
class PPLCNet(TheseusLayer):
C
cuicheng01 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    def __init__(self,
                 scale=1.0,
                 class_num=1000,
                 dropout_prob=0.2,
                 class_expand=1280):
        super().__init__()
        self.scale = scale
        self.class_expand = class_expand

        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            num_filters=make_divisible(16 * scale),
            stride=2)

        self.blocks2 = nn.Sequential(*[
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
        ])

        self.blocks3 = nn.Sequential(*[
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
        ])

        self.blocks4 = nn.Sequential(*[
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
        ])

        self.blocks5 = nn.Sequential(*[
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
        ])

        self.blocks6 = nn.Sequential(*[
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
        ])

        self.avg_pool = AdaptiveAvgPool2D(1)

        self.last_conv = Conv2D(
            in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
            out_channels=self.class_expand,
            kernel_size=1,
            stride=1,
            padding=0,
            bias_attr=False)

        self.hardswish = nn.Hardswish()
        self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)

        self.fc = Linear(self.class_expand, class_num)

    def forward(self, x):
        x = self.conv1(x)

        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = self.blocks5(x)
        x = self.blocks6(x)

        x = self.avg_pool(x)
        x = self.last_conv(x)
        x = self.hardswish(x)
        x = self.dropout(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


C
cuicheng01 已提交
282
def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
283
    """
C
cuicheng01 已提交
284
    PPLCNet_x0_25
C
cuicheng01 已提交
285 286 287 288 289
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
290
        model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args.
C
cuicheng01 已提交
291
    """
C
cuicheng01 已提交
292 293
    model = PPLCNet(scale=0.25, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld)
C
cuicheng01 已提交
294 295 296
    return model


C
cuicheng01 已提交
297
def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
298
    """
C
cuicheng01 已提交
299
    PPLCNet_x0_35
C
cuicheng01 已提交
300 301 302 303 304
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
305
        model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args.
C
cuicheng01 已提交
306
    """
C
cuicheng01 已提交
307 308
    model = PPLCNet(scale=0.35, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld)
C
cuicheng01 已提交
309 310 311
    return model


C
cuicheng01 已提交
312
def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
313
    """
C
cuicheng01 已提交
314
    PPLCNet_x0_5
C
cuicheng01 已提交
315 316 317 318 319
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
320
        model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args.
C
cuicheng01 已提交
321
    """
C
cuicheng01 已提交
322 323
    model = PPLCNet(scale=0.5, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld)
C
cuicheng01 已提交
324 325 326
    return model


C
cuicheng01 已提交
327
def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
328
    """
C
cuicheng01 已提交
329
    PPLCNet_x0_75
C
cuicheng01 已提交
330 331 332 333 334
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
335
        model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args.
C
cuicheng01 已提交
336
    """
C
cuicheng01 已提交
337 338
    model = PPLCNet(scale=0.75, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld)
C
cuicheng01 已提交
339 340 341
    return model


C
cuicheng01 已提交
342
def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
343
    """
C
cuicheng01 已提交
344
    PPLCNet_x1_0
C
cuicheng01 已提交
345 346 347 348 349
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
350
        model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args.
C
cuicheng01 已提交
351
    """
C
cuicheng01 已提交
352 353
    model = PPLCNet(scale=1.0, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld)
C
cuicheng01 已提交
354 355 356
    return model


C
cuicheng01 已提交
357
def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
358
    """
C
cuicheng01 已提交
359
    PPLCNet_x1_5
C
cuicheng01 已提交
360 361 362 363 364
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
365
        model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args.
C
cuicheng01 已提交
366
    """
C
cuicheng01 已提交
367 368
    model = PPLCNet(scale=1.5, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld)
C
cuicheng01 已提交
369 370 371
    return model


C
cuicheng01 已提交
372
def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
373
    """
C
cuicheng01 已提交
374
    PPLCNet_x2_0
C
cuicheng01 已提交
375 376 377 378 379
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
380
        model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args.
C
cuicheng01 已提交
381
    """
C
cuicheng01 已提交
382 383
    model = PPLCNet(scale=2.0, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld)
C
cuicheng01 已提交
384 385 386
    return model


C
cuicheng01 已提交
387
def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
388
    """
C
cuicheng01 已提交
389
    PPLCNet_x2_5
C
cuicheng01 已提交
390 391 392 393 394
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
395
        model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args.
C
cuicheng01 已提交
396
    """
C
cuicheng01 已提交
397 398
    model = PPLCNet(scale=2.5, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld)
C
cuicheng01 已提交
399
    return model