pp_lcnet.py 16.8 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
C
cuicheng01 已提交
20
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
C
cuicheng01 已提交
21 22 23 24 25 26
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
C
cuicheng01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    "PPLCNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
    "PPLCNet_x0_35":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
    "PPLCNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
    "PPLCNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
    "PPLCNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
    "PPLCNet_x1_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
    "PPLCNet_x2_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
    "PPLCNet_x2_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
C
cuicheng01 已提交
43 44
}

45 46 47 48
MODEL_STAGES_PATTERN = {
    "PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"]
}

C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
__all__ = list(MODEL_URLS.keys())

# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
# k: kernel_size
# in_c: input channel number in depthwise block
# out_c: output channel number in depthwise block
# s: stride in depthwise block
# use_se: whether to use SE block

NET_CONFIG = {
    "blocks2":
    #k, in_c, out_c, s, use_se
    [[3, 16, 32, 1, False]],
    "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
    "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
    "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
    "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
C
cuicheng01 已提交
86 87
                 num_groups=1,
                 lr_mult=1.0):
C
cuicheng01 已提交
88 89 90 91 92 93 94 95 96
        super().__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
C
cuicheng01 已提交
97
            weight_attr=ParamAttr(initializer=KaimingNormal(), learning_rate=lr_mult),
C
cuicheng01 已提交
98 99
            bias_attr=False)

C
cuicheng01 已提交
100
        self.bn = BatchNorm2D(
C
cuicheng01 已提交
101
            num_filters,
C
cuicheng01 已提交
102 103
            weight_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult))
C
cuicheng01 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.hardswish(x)
        return x


class DepthwiseSeparable(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 dw_size=3,
C
cuicheng01 已提交
119 120
                 use_se=False,
                 lr_mult=1.0):
C
cuicheng01 已提交
121 122 123 124 125 126 127
        super().__init__()
        self.use_se = use_se
        self.dw_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=dw_size,
            stride=stride,
C
cuicheng01 已提交
128 129
            num_groups=num_channels,
            lr_mult=lr_mult)
C
cuicheng01 已提交
130
        if use_se:
C
cuicheng01 已提交
131 132
            self.se = SEModule(num_channels,
                               lr_mult=lr_mult)
C
cuicheng01 已提交
133 134 135 136
        self.pw_conv = ConvBNLayer(
            num_channels=num_channels,
            filter_size=1,
            num_filters=num_filters,
C
cuicheng01 已提交
137 138
            stride=1,
            lr_mult=lr_mult)
C
cuicheng01 已提交
139 140 141 142 143 144 145 146 147 148

    def forward(self, x):
        x = self.dw_conv(x)
        if self.use_se:
            x = self.se(x)
        x = self.pw_conv(x)
        return x


class SEModule(TheseusLayer):
C
cuicheng01 已提交
149
    def __init__(self, channel, reduction=4, lr_mult=1.0):
C
cuicheng01 已提交
150 151 152 153 154 155 156
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
157 158 159
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
160 161 162 163 164 165
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
166 167 168
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x


C
cuicheng01 已提交
182
class PPLCNet(TheseusLayer):
C
cuicheng01 已提交
183
    def __init__(self,
184
                 stages_pattern,
C
cuicheng01 已提交
185 186 187
                 scale=1.0,
                 class_num=1000,
                 dropout_prob=0.2,
188
                 class_expand=1280,
C
cuicheng01 已提交
189 190 191
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                 stride_list=[2, 2, 2, 2, 2],
                 use_last_conv=True,
192 193
                 return_patterns=None,
                 return_stages=None):
C
cuicheng01 已提交
194 195 196
        super().__init__()
        self.scale = scale
        self.class_expand = class_expand
C
cuicheng01 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self.lr_mult_list = lr_mult_list
        self.use_last_conv = use_last_conv
        self.stride_list = stride_list
        self.net_config = NET_CONFIG
        if isinstance(self.lr_mult_list, str):
            self.lr_mult_list = eval(self.lr_mult_list)

        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
        assert len(self.lr_mult_list
                   ) == 6, "lr_mult_list length should be 6 but got {}".format(
                       len(self.lr_mult_list))

        assert isinstance(self.stride_list, (
            list, tuple
        )), "stride_list should be in (list, tuple) but got {}".format(
            type(self.stride_list))
        assert len(self.stride_list
                   ) == 5, "stride_list length should be 5 but got {}".format(
                       len(self.stride_list))
        for i, stride in enumerate(stride_list[1:]):
            self.net_config["blocks{}".format(i+3)][0][3] = stride
C
cuicheng01 已提交
221 222 223 224
        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            num_filters=make_divisible(16 * scale),
C
cuicheng01 已提交
225 226
            stride=stride_list[0],
            lr_mult=self.lr_mult_list[0])
C
cuicheng01 已提交
227

228
        self.blocks2 = nn.Sequential(* [
C
cuicheng01 已提交
229 230 231 232 233
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
234 235 236
                use_se=se,
                lr_mult=self.lr_mult_list[1])
            for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks2"])
C
cuicheng01 已提交
237 238
        ])

239
        self.blocks3 = nn.Sequential(* [
C
cuicheng01 已提交
240 241 242 243 244
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
245 246 247
                use_se=se,
                lr_mult=self.lr_mult_list[2])
            for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks3"])
C
cuicheng01 已提交
248 249
        ])

250
        self.blocks4 = nn.Sequential(* [
C
cuicheng01 已提交
251 252 253 254 255
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
256 257 258
                use_se=se,
                lr_mult=self.lr_mult_list[3])
            for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks4"])
C
cuicheng01 已提交
259 260
        ])

261
        self.blocks5 = nn.Sequential(* [
C
cuicheng01 已提交
262 263 264 265 266
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
267 268 269
                use_se=se,
                lr_mult=self.lr_mult_list[4])
            for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks5"])
C
cuicheng01 已提交
270 271
        ])

272
        self.blocks6 = nn.Sequential(* [
C
cuicheng01 已提交
273 274 275 276 277
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
278 279 280
                use_se=se,
                lr_mult=self.lr_mult_list[5])
            for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks6"])
C
cuicheng01 已提交
281 282 283
        ])

        self.avg_pool = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
284 285 286 287 288 289 290 291 292 293 294 295
        if self.use_last_conv:
            self.last_conv = Conv2D(
                in_channels=make_divisible(self.net_config["blocks6"][-1][2] * scale),
                out_channels=self.class_expand,
                kernel_size=1,
                stride=1,
                padding=0,
                bias_attr=False)
            self.hardswish = nn.Hardswish()
            self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        else:
            self.last_conv = None
C
cuicheng01 已提交
296
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
C
cuicheng01 已提交
297
        self.fc = Linear(self.class_expand if self.use_last_conv else make_divisible(self.net_config["blocks6"][-1][2]), class_num)
C
cuicheng01 已提交
298

299 300 301 302
        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
303

C
cuicheng01 已提交
304 305 306 307 308 309 310 311 312 313
    def forward(self, x):
        x = self.conv1(x)

        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = self.blocks5(x)
        x = self.blocks6(x)

        x = self.avg_pool(x)
C
cuicheng01 已提交
314 315 316 317
        if self.last_conv is not None:
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
C
cuicheng01 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


C
cuicheng01 已提交
336
def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
337
    """
C
cuicheng01 已提交
338
    PPLCNet_x0_25
C
cuicheng01 已提交
339 340 341 342 343
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
344
        model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args.
C
cuicheng01 已提交
345
    """
346 347
    model = PPLCNet(
        scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
348
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld)
C
cuicheng01 已提交
349 350 351
    return model


C
cuicheng01 已提交
352
def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
353
    """
C
cuicheng01 已提交
354
    PPLCNet_x0_35
C
cuicheng01 已提交
355 356 357 358 359
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
360
        model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args.
C
cuicheng01 已提交
361
    """
362 363
    model = PPLCNet(
        scale=0.35, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
364
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld)
C
cuicheng01 已提交
365 366 367
    return model


C
cuicheng01 已提交
368
def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
369
    """
C
cuicheng01 已提交
370
    PPLCNet_x0_5
C
cuicheng01 已提交
371 372 373 374 375
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
376
        model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args.
C
cuicheng01 已提交
377
    """
378 379
    model = PPLCNet(
        scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
380
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld)
C
cuicheng01 已提交
381 382 383
    return model


C
cuicheng01 已提交
384
def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
385
    """
C
cuicheng01 已提交
386
    PPLCNet_x0_75
C
cuicheng01 已提交
387 388 389 390 391
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
392
        model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args.
C
cuicheng01 已提交
393
    """
394 395
    model = PPLCNet(
        scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
396
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld)
C
cuicheng01 已提交
397 398 399
    return model


C
cuicheng01 已提交
400
def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
401
    """
C
cuicheng01 已提交
402
    PPLCNet_x1_0
C
cuicheng01 已提交
403 404 405 406 407
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
408
        model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args.
C
cuicheng01 已提交
409
    """
410 411
    model = PPLCNet(
        scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
412
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld)
C
cuicheng01 已提交
413 414 415
    return model


C
cuicheng01 已提交
416
def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
417
    """
C
cuicheng01 已提交
418
    PPLCNet_x1_5
C
cuicheng01 已提交
419 420 421 422 423
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
424
        model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args.
C
cuicheng01 已提交
425
    """
426 427
    model = PPLCNet(
        scale=1.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
428
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld)
C
cuicheng01 已提交
429 430 431
    return model


C
cuicheng01 已提交
432
def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
433
    """
C
cuicheng01 已提交
434
    PPLCNet_x2_0
C
cuicheng01 已提交
435 436 437 438 439
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
440
        model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args.
C
cuicheng01 已提交
441
    """
442 443
    model = PPLCNet(
        scale=2.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
444
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld)
C
cuicheng01 已提交
445 446 447
    return model


C
cuicheng01 已提交
448
def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
449
    """
C
cuicheng01 已提交
450
    PPLCNet_x2_5
C
cuicheng01 已提交
451 452 453 454 455
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
456
        model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args.
C
cuicheng01 已提交
457
    """
458 459
    model = PPLCNet(
        scale=2.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
460
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld)
C
cuicheng01 已提交
461
    return model