engine.py 27.5 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
18
import platform
D
dongshuilong 已提交
19 20 21
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
22
from paddle import nn
D
dongshuilong 已提交
23 24
import numpy as np
import random
D
dongshuilong 已提交
25

26
from ppcls.utils.misc import AverageMeter
D
dongshuilong 已提交
27 28 29
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
30
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
31
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
32
from ppcls.arch import apply_to_static
33 34 35 36
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
37
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
38
from ppcls.utils.save_load import init_model
39
from ppcls.utils import save_load
D
dongshuilong 已提交
40 41 42 43

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
44
from ppcls.engine import train as train_method
45
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
46
from ppcls.engine import evaluation
D
dongshuilong 已提交
47 48 49
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
50
class Engine(object):
D
dongshuilong 已提交
51
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
52
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
53 54
        self.mode = mode
        self.config = config
55 56 57
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
        self.train_mode = self.config["Global"].get("train_mode", None)
58 59 60 61 62 63
        if "Head" in self.config["Arch"] or self.config["Arch"].get("is_rec",
                                                                    False):
            self.is_rec = True
        else:
            self.is_rec = False

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        # set seed
        seed = self.config["Global"].get("seed", False)
        if seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

        # init logger
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
        init_logger(log_file=log_file)
        print_config(config)

79
        # init train_func and eval_func
80 81 82
        assert self.eval_mode in [
            "classification", "retrieval", "adaface"
        ], logger.error("Invalid eval mode: {}".format(self.eval_mode))
83 84 85 86 87 88
        if self.train_mode is None:
            self.train_epoch_func = train_method.train_epoch
        else:
            self.train_epoch_func = getattr(train_method,
                                            "train_epoch_" + self.train_mode)
        self.eval_func = getattr(evaluation, self.eval_mode + "_eval")
89

90 91 92 93 94 95 96 97 98 99 100
        self.use_dali = self.config['Global'].get("use_dali", False)

        # for visualdl
        self.vdl_writer = None
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            self.vdl_writer = LogWriter(logdir=vdl_writer_path)

D
dongshuilong 已提交
101
        # set device
102 103 104 105 106
        assert self.config["Global"][
            "device"] in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        self.device = paddle.set_device(self.config["Global"]["device"])
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, self.device))
D
dongshuilong 已提交
107

108 109 110
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        if "class_num" in config["Global"]:
            global_class_num = config["Global"]["class_num"]
            if "class_num" not in config["Arch"]:
                config["Arch"]["class_num"] = global_class_num
                msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}."
            else:
                msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored."
            logger.warning(msg)
        #TODO(gaotingquan): support rec
        class_num = config["Arch"].get("class_num", None)
        self.config["DataLoader"].update({"class_num": class_num})
        self.config["DataLoader"].update({
            "epochs": self.config["Global"]["epochs"]
        })

126
        # build dataloader
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        if self.mode == 'train':
            self.train_dataloader = build_dataloader(
                self.config["DataLoader"], "Train", self.device, self.use_dali)
            if self.config["DataLoader"].get('UnLabelTrain', None) is not None:
                self.unlabel_train_dataloader = build_dataloader(
                    self.config["DataLoader"], "UnLabelTrain", self.device,
                    self.use_dali)
            else:
                self.unlabel_train_dataloader = None

            self.iter_per_epoch = len(
                self.train_dataloader) - 1 if platform.system(
                ) == "Windows" else len(self.train_dataloader)
            if self.config["Global"].get("iter_per_epoch", None):
                # set max iteration per epoch mannualy, when training by iteration(s), such as XBM, FixMatch.
                self.iter_per_epoch = self.config["Global"].get(
                    "iter_per_epoch")
            self.iter_per_epoch = self.iter_per_epoch // self.update_freq * self.update_freq

        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            if self.eval_mode in ["classification", "adaface"]:
                self.eval_dataloader = build_dataloader(
                    self.config["DataLoader"], "Eval", self.device,
                    self.use_dali)
            elif self.eval_mode == "retrieval":
                self.gallery_query_dataloader = None
                if len(self.config["DataLoader"]["Eval"].keys()) == 1:
                    key = list(self.config["DataLoader"]["Eval"].keys())[0]
                    self.gallery_query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], key, self.device,
                        self.use_dali)
                else:
                    self.gallery_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Gallery",
                        self.device, self.use_dali)
                    self.query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Query",
                        self.device, self.use_dali)
166 167

        # build loss
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        if self.mode == "train":
            label_loss_info = self.config["Loss"]["Train"]
            self.train_loss_func = build_loss(label_loss_info)
            unlabel_loss_info = self.config.get("UnLabelLoss", {}).get("Train",
                                                                       None)
            self.unlabel_train_loss_func = build_loss(unlabel_loss_info)
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            loss_config = self.config.get("Loss", None)
            if loss_config is not None:
                loss_config = loss_config.get("Eval")
                if loss_config is not None:
                    self.eval_loss_func = build_loss(loss_config)
                else:
                    self.eval_loss_func = None
            else:
                self.eval_loss_func = None
185 186

        # build metric
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        if self.mode == 'train' and "Metric" in self.config and "Train" in self.config[
                "Metric"] and self.config["Metric"]["Train"]:
            metric_config = self.config["Metric"]["Train"]
            if hasattr(self.train_dataloader, "collate_fn"
                       ) and self.train_dataloader.collate_fn is not None:
                for m_idx, m in enumerate(metric_config):
                    if "TopkAcc" in m:
                        msg = f"Unable to calculate accuracy when using \"batch_transform_ops\". The metric \"{m}\" has been removed."
                        logger.warning(msg)
                        metric_config.pop(m_idx)
            self.train_metric_func = build_metrics(metric_config)
        else:
            self.train_metric_func = None

        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            if self.eval_mode == "classification":
                if "Metric" in self.config and "Eval" in self.config["Metric"]:
                    self.eval_metric_func = build_metrics(self.config["Metric"]
                                                          ["Eval"])
                else:
                    self.eval_metric_func = None
            elif self.eval_mode == "retrieval":
                if "Metric" in self.config and "Eval" in self.config["Metric"]:
                    metric_config = self.config["Metric"]["Eval"]
                else:
                    metric_config = [{"name": "Recallk", "topk": (1, 5)}]
                self.eval_metric_func = build_metrics(metric_config)
        else:
            self.eval_metric_func = None
217

D
dongshuilong 已提交
218
        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
219
        self.model = build_model(self.config, self.mode)
220 221
        # set @to_static for benchmark, skip this by default.
        apply_to_static(self.config, self.model)
D
dongshuilong 已提交
222

T
Tingquan Gao 已提交
223
        # load_pretrain
224 225 226 227 228 229 230 231 232
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
T
Tingquan Gao 已提交
233

234
        # build optimizer
235 236 237 238 239
        if self.mode == 'train':
            self.optimizer, self.lr_sch = build_optimizer(
                self.config["Optimizer"], self.config["Global"]["epochs"],
                self.iter_per_epoch // self.update_freq,
                [self.model, self.train_loss_func])
240 241

        # AMP training and evaluating
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                self.amp_level = "O1"

            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
                    True) and self.amp_level == "O2" and self.amp_eval == False:
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
                self.amp_eval = True

            # TODO(gaotingquan): to compatible with different versions of Paddle
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "0.0"]:
                if self.mode == "train":
                    self.model, self.optimizer = paddle.amp.decorate(
                        models=self.model,
                        optimizers=self.optimizer,
                        level=self.amp_level,
                        save_dtype='float32')
                elif self.amp_eval:
                    if self.amp_level == "O2":
                        msg = "The PaddlePaddle that installed not support FP16 evaluation in AMP O2. Please use PaddlePaddle version >= 2.3.0. Use FP32 evaluation instead and please notice the Eval Dataset output_fp16 should be 'False'."
                        logger.warning(msg)
                        self.amp_eval = False
                    else:
                        self.model, self.optimizer = paddle.amp.decorate(
                            models=self.model,
                            level=self.amp_level,
                            save_dtype='float32')
            # paddle version >= 2.3.0 or develop
            else:
                if self.mode == "train" or self.amp_eval:
                    self.model = paddle.amp.decorate(
                        models=self.model,
                        level=self.amp_level,
                        save_dtype='float32')

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')

        # build EMA model
        self.ema = "EMA" in self.config and self.mode == "train"
        if self.ema:
            self.model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))

        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)
328 329

        # for distributed
330 331 332
        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
L
leozhang0912 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            if self.mode == 'train' and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)

            # set different seed in different GPU manually in distributed environment
            if seed is None:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            paddle.seed(int(seed) + dist.get_rank())
            np.random.seed(int(seed) + dist.get_rank())
            random.seed(int(seed) + dist.get_rank())

        # build postprocess for infer
        if self.mode == 'infer':
            self.preprocess_func = create_operators(self.config["Infer"][
                "transforms"])
            self.postprocess_func = build_postprocess(self.config["Infer"][
                "PostProcess"])
D
dongshuilong 已提交
358

359 360 361 362 363 364 365 366
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
            "metric": -1.0,
            "epoch": 0,
        }
367
        ema_module = None
368 369 370
        if self.ema:
            best_metric_ema = 0.0
            ema_module = self.model_ema.module
371 372 373 374 375 376 377 378 379 380 381
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0
382 383 384 385 386 387 388 389 390 391 392

        if self.config.Global.checkpoints is not None:
            metric_info = init_model(self.config.Global, self.model,
                                     self.optimizer, self.train_loss_func,
                                     ema_module)
            if metric_info is not None:
                best_metric.update(metric_info)

        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
393 394 395
            # for one epoch train
            self.train_epoch_func(self, epoch_id, print_batch_step)

396 397
            if self.use_dali:
                self.train_dataloader.reset()
398 399
            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
400 401
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
402 403
            self.output_info.clear()

404 405 406
            # eval model and save model if possible
            start_eval_epoch = self.config["Global"].get("start_eval_epoch",
                                                         0) - 1
407 408
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
409
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
410 411 412 413 414 415 416 417 418 419 420
                acc = self.eval(epoch_id)

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
                        self.lr_sch[i].step(acc)

                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
421 422 423
                    save_load.save_model(
                        self.model,
                        self.optimizer,
424
                        best_metric,
425 426 427
                        self.output_dir,
                        ema=ema_module,
                        model_name=self.config["Arch"]["name"],
428
                        prefix="best_model",
429
                        loss=self.train_loss_func,
430 431 432 433 434 435 436 437 438 439 440
                        save_student_model=True)
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

441 442
                if self.ema:
                    ori_model, self.model = self.model, ema_module
443 444
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
445
                    ema_module.eval()
446 447 448

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
449 450 451 452 453 454 455 456 457 458
                        save_load.save_model(
                            self.model,
                            self.optimizer,
                            {"metric": acc_ema,
                             "epoch": epoch_id},
                            self.output_dir,
                            ema=ema_module,
                            model_name=self.config["Arch"]["name"],
                            prefix="best_model_ema",
                            loss=self.train_loss_func)
459 460 461 462 463 464 465 466 467 468
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

            # save model
            if save_interval > 0 and epoch_id % save_interval == 0:
469 470 471 472 473 474 475 476 477
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
                    ema=ema_module,
                    model_name=self.config["Arch"]["name"],
                    prefix="epoch_{}".format(epoch_id),
                    loss=self.train_loss_func)
478
            # save the latest model
479 480 481 482 483 484 485 486 487
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
                ema=ema_module,
                model_name=self.config["Arch"]["name"],
                prefix="latest",
                loss=self.train_loss_func)
488 489 490 491 492 493 494 495 496 497 498 499

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
        eval_result = self.eval_func(self, epoch_id)
        self.model.train()
        return eval_result

D
dongshuilong 已提交
500 501 502
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
503 504
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
522 523 524 525 526 527 528 529 530 531

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)
G
gaotingquan 已提交
532

D
dongshuilong 已提交
533 534
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
535 536
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
537 538 539
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
540
                    out = out["output"]
D
dongshuilong 已提交
541 542 543 544 545 546 547
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
548 549
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
550
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
551
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
552 553 554 555 556 557 558 559 560
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
561 562

        model.eval()
G
gaotingquan 已提交
563

564
        # for re-parameterization nets
H
HydrogenSulfate 已提交
565
        for layer in self.model.sublayers():
566 567 568
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
569

D
dongshuilong 已提交
570 571
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
572 573 574 575 576 577 578 579 580 581 582 583

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
584 585
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
586 587 588
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
589 590


W
dbg  
weishengyu 已提交
591
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
592 593 594 595
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
596
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
597 598 599 600 601 602 603 604 605 606 607 608
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
609 610
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
611
        else:
C
cuicheng01 已提交
612 613 614 615
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
631
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
632 633
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
634
            x = self.out_act(x)
D
dongshuilong 已提交
635
        return x