csp_resnet.py 8.0 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

24 25 26 27
__all__ = [
    "CSPResNet50_leaky", "CSPResNet50_mish", "CSPResNet101_leaky",
    "CSPResNet101_mish"
]
littletomatodonkey's avatar
littletomatodonkey 已提交
28 29


littletomatodonkey's avatar
littletomatodonkey 已提交
30
class CSPResNet():
31
    def __init__(self, layers=50, act="leaky_relu"):
littletomatodonkey's avatar
littletomatodonkey 已提交
32
        self.layers = layers
33
        self.act = act
littletomatodonkey's avatar
littletomatodonkey 已提交
34 35 36

    def net(self, input, class_dim=1000, data_format="NCHW"):
        layers = self.layers
littletomatodonkey's avatar
littletomatodonkey 已提交
37
        supported_layers = [50, 101]
littletomatodonkey's avatar
littletomatodonkey 已提交
38 39 40 41
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

littletomatodonkey's avatar
littletomatodonkey 已提交
42
        if layers == 50:
littletomatodonkey's avatar
littletomatodonkey 已提交
43
            depth = [3, 3, 5, 2]
littletomatodonkey's avatar
littletomatodonkey 已提交
44
        elif layers == 101:
littletomatodonkey's avatar
littletomatodonkey 已提交
45 46
            depth = [3, 3, 22, 2]

littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49 50 51 52 53
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input,
            num_filters=64,
            filter_size=7,
            stride=2,
54
            act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56 57 58
            name="conv1",
            data_format=data_format)
        conv = fluid.layers.pool2d(
            input=conv,
littletomatodonkey's avatar
littletomatodonkey 已提交
59
            pool_size=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
60
            pool_stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
61
            pool_padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63 64
            pool_type='max',
            data_format=data_format)

littletomatodonkey's avatar
littletomatodonkey 已提交
65 66 67 68 69 70 71 72
        for block in range(len(depth)):
            conv_name = "res" + str(block + 2) + chr(97)
            if block != 0:
                conv = self.conv_bn_layer(
                    input=conv,
                    num_filters=num_filters[block],
                    filter_size=3,
                    stride=2,
73
                    act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
74
                    name=conv_name + "_downsample",
littletomatodonkey's avatar
littletomatodonkey 已提交
75 76
                    data_format=data_format)

littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80 81 82 83 84 85 86 87
            # split
            left = conv
            right = conv
            if block == 0:
                ch = num_filters[block]
            else:
                ch = num_filters[block] * 2
            right = self.conv_bn_layer(
                input=right,
                num_filters=ch,
                filter_size=1,
88
                act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90 91 92 93 94 95
                name=conv_name + "_right_first_route",
                data_format=data_format)

            for i in range(depth[block]):
                conv_name = "res" + str(block + 2) + chr(97 + i)

                right = self.bottleneck_block(
littletomatodonkey's avatar
littletomatodonkey 已提交
96
                    input=right,
littletomatodonkey's avatar
littletomatodonkey 已提交
97
                    num_filters=num_filters[block],
littletomatodonkey's avatar
littletomatodonkey 已提交
98
                    stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
99
                    name=conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
100
                    data_format=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
101 102 103 104 105 106

            # route
            left = self.conv_bn_layer(
                input=left,
                num_filters=num_filters[block] * 2,
                filter_size=1,
107
                act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
108 109 110 111 112 113
                name=conv_name + "_left_route",
                data_format=data_format)
            right = self.conv_bn_layer(
                input=right,
                num_filters=num_filters[block] * 2,
                filter_size=1,
114
                act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
115 116 117 118 119 120 121 122 123
                name=conv_name + "_right_route",
                data_format=data_format)
            conv = fluid.layers.concat([left, right], axis=1)

            conv = self.conv_bn_layer(
                input=conv,
                num_filters=num_filters[block] * 2,
                filter_size=1,
                stride=1,
124
                act=self.act,
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
                name=conv_name + "_merged_transition",
                data_format=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        pool = fluid.layers.pool2d(
            input=conv,
            pool_type='avg',
            global_pooling=True,
            data_format=data_format)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
                name="fc_0.w_0",
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(name="fc_0.b_0"))
        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None,
                      data_format='NCHW'):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
159
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + '.conv2d.output.1',
            data_format=data_format)

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        bn = fluid.layers.batch_norm(
            input=conv,
            act=None,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
            data_layout=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
178 179 180 181
        if act == "relu":
            bn = fluid.layers.relu(bn)
        elif act == "leaky_relu":
            bn = fluid.layers.leaky_relu(bn)
182 183
        elif act == "mish":
            bn = self._mish(bn)
littletomatodonkey's avatar
littletomatodonkey 已提交
184 185
        return bn

186 187 188 189 190 191 192
    def _mish(self, input):
        return input * fluid.layers.tanh(self._softplus(input))

    def _softplus(self, input):
        expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50))
        return fluid.layers.log(1 + expf)

littletomatodonkey's avatar
littletomatodonkey 已提交
193 194 195 196 197
    def shortcut(self, input, ch_out, stride, is_first, name, data_format):
        if data_format == 'NCHW':
            ch_in = input.shape[1]
        else:
            ch_in = input.shape[-1]
littletomatodonkey's avatar
littletomatodonkey 已提交
198
        if ch_in != ch_out or stride != 1 or is_first is True:
littletomatodonkey's avatar
littletomatodonkey 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
            return self.conv_bn_layer(
                input, ch_out, 1, stride, name=name, data_format=data_format)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, data_format):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act="leaky_relu",
            name=name + "_branch2a",
            data_format=data_format)
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="leaky_relu",
            name=name + "_branch2b",
            data_format=data_format)
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 2,
            filter_size=1,
            act=None,
            name=name + "_branch2c",
            data_format=data_format)

        short = self.shortcut(
            input,
            num_filters * 2,
            stride,
            is_first=False,
            name=name + "_branch1",
            data_format=data_format)

        ret = short + conv2
        ret = fluid.layers.leaky_relu(ret, alpha=0.1)
        return ret


241 242 243 244 245 246 247 248 249 250 251 252
def CSPResNet50_leaky():
    model = CSPResNet(layers=50, act="leaky_relu")
    return model


def CSPResNet50_mish():
    model = CSPResNet(layers=50, act="mish")
    return model


def CSPResNet101_leaky():
    model = CSPResNet(layers=101, act="leaky_relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
253
    return model
littletomatodonkey's avatar
littletomatodonkey 已提交
254 255


256 257
def CSPResNet101_mish():
    model = CSPResNet(layers=101, act="mish")
littletomatodonkey's avatar
littletomatodonkey 已提交
258
    return model