csp_resnet.py 8.0 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

littletomatodonkey's avatar
littletomatodonkey 已提交
25
__all__ = ["CSPResNet50", ]
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27


littletomatodonkey's avatar
littletomatodonkey 已提交
28
class CSPResNet():
littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
    def __init__(self, layers=50):
        self.layers = layers

    def net(self, input, class_dim=1000, data_format="NCHW"):
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
littletomatodonkey's avatar
littletomatodonkey 已提交
42
            depth = [3, 3, 5, 2]
littletomatodonkey's avatar
littletomatodonkey 已提交
43 44 45 46 47 48 49 50 51 52 53
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input,
            num_filters=64,
            filter_size=7,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
54
            act='leaky',
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56 57 58
            name="conv1",
            data_format=data_format)
        conv = fluid.layers.pool2d(
            input=conv,
littletomatodonkey's avatar
littletomatodonkey 已提交
59
            pool_size=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
60
            pool_stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
61
            pool_padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63 64 65 66 67 68 69 70
            pool_type='max',
            data_format=data_format)

        if layers >= 50:
            for block in range(len(depth)):
                conv_name = "res" + str(block + 2) + chr(97)
                if block != 0:
                    conv = self.conv_bn_layer(
                        input=conv,
littletomatodonkey's avatar
littletomatodonkey 已提交
71
                        num_filters=num_filters[block],
littletomatodonkey's avatar
littletomatodonkey 已提交
72 73 74 75 76 77 78
                        filter_size=3,
                        stride=2,
                        act="leaky_relu",
                        name=conv_name + "_downsample",
                        data_format=data_format)

                # layer warp
littletomatodonkey's avatar
littletomatodonkey 已提交
79 80 81 82 83 84 85 86 87 88
                #                 left, right = fluid.layers.split(
                #                     conv,
                #                     num_or_sections=[conv.shape[1]//2, conv.shape[1]//2],
                #                     dim=1)
                left = conv
                right = conv
                if block == 0:
                    ch = num_filters[block]
                else:
                    ch = num_filters[block] * 2
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90
                right = self.conv_bn_layer(
                    input=right,
littletomatodonkey's avatar
littletomatodonkey 已提交
91
                    num_filters=ch,
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
                    filter_size=1,
                    act="leaky_relu",
                    name=conv_name + "_right_first_route",
                    data_format=data_format)

                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)

                    right = self.bottleneck_block(
                        input=right,
                        num_filters=num_filters[block],
                        stride=1,
                        name=conv_name,
                        data_format=data_format)

                # route
                left = self.conv_bn_layer(
                    input=left,
                    num_filters=num_filters[block] * 2,
                    filter_size=1,
                    act="leaky_relu",
                    name=conv_name + "_left_route",
                    data_format=data_format)
                right = self.conv_bn_layer(
                    input=right,
                    num_filters=num_filters[block] * 2,
                    filter_size=1,
                    act="leaky_relu",
                    name=conv_name + "_right_route",
                    data_format=data_format)
                conv = fluid.layers.concat([left, right], axis=1)

                conv = self.conv_bn_layer(
                    input=conv,
                    num_filters=num_filters[block] * 2,
                    filter_size=1,
                    stride=1,
                    act="leaky_relu",
                    name=conv_name + "_merged_transition",
                    data_format=data_format)
        else:
            assert False, "not implemented now!!!"

        pool = fluid.layers.pool2d(
            input=conv,
            pool_type='avg',
            global_pooling=True,
            data_format=data_format)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
                name="fc_0.w_0",
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(name="fc_0.b_0"))
        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None,
                      data_format='NCHW'):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
166
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + '.conv2d.output.1',
            data_format=data_format)

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        bn = fluid.layers.batch_norm(
            input=conv,
            act=None,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
            data_layout=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187 188
        if act == "relu":
            bn = fluid.layers.relu(bn)
        elif act == "leaky_relu":
            bn = fluid.layers.leaky_relu(bn)
littletomatodonkey's avatar
littletomatodonkey 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        return bn

    def shortcut(self, input, ch_out, stride, is_first, name, data_format):
        if data_format == 'NCHW':
            ch_in = input.shape[1]
        else:
            ch_in = input.shape[-1]
        if ch_in != ch_out or stride != 1 or is_first == True:
            return self.conv_bn_layer(
                input, ch_out, 1, stride, name=name, data_format=data_format)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, data_format):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act="leaky_relu",
            name=name + "_branch2a",
            data_format=data_format)
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="leaky_relu",
            name=name + "_branch2b",
            data_format=data_format)
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 2,
            filter_size=1,
            act=None,
            name=name + "_branch2c",
            data_format=data_format)

        short = self.shortcut(
            input,
            num_filters * 2,
            stride,
            is_first=False,
            name=name + "_branch1",
            data_format=data_format)

        ret = short + conv2
        ret = fluid.layers.leaky_relu(ret, alpha=0.1)
        return ret


littletomatodonkey's avatar
littletomatodonkey 已提交
239 240
def CSPResNet50():
    model = CSPResNet(layers=50)
littletomatodonkey's avatar
littletomatodonkey 已提交
241
    return model