csp_resnet.py 7.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

littletomatodonkey's avatar
littletomatodonkey 已提交
24
__all__ = ["CSPResNet50", "CSPResNet101"]
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26


littletomatodonkey's avatar
littletomatodonkey 已提交
27
class CSPResNet():
littletomatodonkey's avatar
littletomatodonkey 已提交
28 29 30 31 32
    def __init__(self, layers=50):
        self.layers = layers

    def net(self, input, class_dim=1000, data_format="NCHW"):
        layers = self.layers
littletomatodonkey's avatar
littletomatodonkey 已提交
33
        supported_layers = [50, 101]
littletomatodonkey's avatar
littletomatodonkey 已提交
34 35 36 37
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

littletomatodonkey's avatar
littletomatodonkey 已提交
38
        if layers == 50:
littletomatodonkey's avatar
littletomatodonkey 已提交
39
            depth = [3, 3, 5, 2]
littletomatodonkey's avatar
littletomatodonkey 已提交
40
        elif layers == 101:
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42
            depth = [3, 3, 22, 2]

littletomatodonkey's avatar
littletomatodonkey 已提交
43 44 45 46 47 48 49
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input,
            num_filters=64,
            filter_size=7,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
50
            act='leaky',
littletomatodonkey's avatar
littletomatodonkey 已提交
51 52 53 54
            name="conv1",
            data_format=data_format)
        conv = fluid.layers.pool2d(
            input=conv,
littletomatodonkey's avatar
littletomatodonkey 已提交
55
            pool_size=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
56
            pool_stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
57
            pool_padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
58 59 60
            pool_type='max',
            data_format=data_format)

littletomatodonkey's avatar
littletomatodonkey 已提交
61 62 63 64 65 66 67 68
        for block in range(len(depth)):
            conv_name = "res" + str(block + 2) + chr(97)
            if block != 0:
                conv = self.conv_bn_layer(
                    input=conv,
                    num_filters=num_filters[block],
                    filter_size=3,
                    stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
69
                    act="leaky_relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
70
                    name=conv_name + "_downsample",
littletomatodonkey's avatar
littletomatodonkey 已提交
71 72
                    data_format=data_format)

littletomatodonkey's avatar
littletomatodonkey 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            # split
            left = conv
            right = conv
            if block == 0:
                ch = num_filters[block]
            else:
                ch = num_filters[block] * 2
            right = self.conv_bn_layer(
                input=right,
                num_filters=ch,
                filter_size=1,
                act="leaky_relu",
                name=conv_name + "_right_first_route",
                data_format=data_format)

            for i in range(depth[block]):
                conv_name = "res" + str(block + 2) + chr(97 + i)

                right = self.bottleneck_block(
littletomatodonkey's avatar
littletomatodonkey 已提交
92
                    input=right,
littletomatodonkey's avatar
littletomatodonkey 已提交
93
                    num_filters=num_filters[block],
littletomatodonkey's avatar
littletomatodonkey 已提交
94
                    stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
95
                    name=conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
96
                    data_format=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

            # route
            left = self.conv_bn_layer(
                input=left,
                num_filters=num_filters[block] * 2,
                filter_size=1,
                act="leaky_relu",
                name=conv_name + "_left_route",
                data_format=data_format)
            right = self.conv_bn_layer(
                input=right,
                num_filters=num_filters[block] * 2,
                filter_size=1,
                act="leaky_relu",
                name=conv_name + "_right_route",
                data_format=data_format)
            conv = fluid.layers.concat([left, right], axis=1)

            conv = self.conv_bn_layer(
                input=conv,
                num_filters=num_filters[block] * 2,
                filter_size=1,
                stride=1,
                act="leaky_relu",
                name=conv_name + "_merged_transition",
                data_format=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        pool = fluid.layers.pool2d(
            input=conv,
            pool_type='avg',
            global_pooling=True,
            data_format=data_format)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
                name="fc_0.w_0",
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(name="fc_0.b_0"))
        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None,
                      data_format='NCHW'):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
155
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + '.conv2d.output.1',
            data_format=data_format)

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        bn = fluid.layers.batch_norm(
            input=conv,
            act=None,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
            data_layout=data_format)
littletomatodonkey's avatar
littletomatodonkey 已提交
174 175 176 177
        if act == "relu":
            bn = fluid.layers.relu(bn)
        elif act == "leaky_relu":
            bn = fluid.layers.leaky_relu(bn)
littletomatodonkey's avatar
littletomatodonkey 已提交
178 179 180 181 182 183 184
        return bn

    def shortcut(self, input, ch_out, stride, is_first, name, data_format):
        if data_format == 'NCHW':
            ch_in = input.shape[1]
        else:
            ch_in = input.shape[-1]
littletomatodonkey's avatar
littletomatodonkey 已提交
185
        if ch_in != ch_out or stride != 1 or is_first is True:
littletomatodonkey's avatar
littletomatodonkey 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            return self.conv_bn_layer(
                input, ch_out, 1, stride, name=name, data_format=data_format)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, data_format):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act="leaky_relu",
            name=name + "_branch2a",
            data_format=data_format)
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="leaky_relu",
            name=name + "_branch2b",
            data_format=data_format)
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 2,
            filter_size=1,
            act=None,
            name=name + "_branch2c",
            data_format=data_format)

        short = self.shortcut(
            input,
            num_filters * 2,
            stride,
            is_first=False,
            name=name + "_branch1",
            data_format=data_format)

        ret = short + conv2
        ret = fluid.layers.leaky_relu(ret, alpha=0.1)
        return ret


littletomatodonkey's avatar
littletomatodonkey 已提交
228 229
def CSPResNet50():
    model = CSPResNet(layers=50)
littletomatodonkey's avatar
littletomatodonkey 已提交
230
    return model
littletomatodonkey's avatar
littletomatodonkey 已提交
231 232 233 234 235


def CSPResNet101():
    model = CSPResNet(layers=101)
    return model