Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #5782

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 20, 2017 by saxon_zh@saxon_zhGuest

Paddle on Mobile

Created by: hedaoyuan

Paddle on Mobile

Based on some previous work and issues, I've listed some things Paddle needs to do on the mobile and embedded devices.

Build

Paddle mobile inference library needs to support a variety of computing platforms, including Linux, Android, iOS and CPUs, CPUs etc. So, we need to continue refining the entire compilation project (Especially Android and iOS compilation project). In addition, the binary size of the inference library also needs to continue to optimize.

Inference API

The C-API design did not consider the mobile scene. The existing C-API is also not enough on the mobile side (Android need Java API). We need to think about whether to refactor or refine the C-API. And it is more reasonable to rename C-API to Inference API. Also, we need to improve the inference programming model on mobile.

Low Precision

Low-precision calculations can allow for smaller and faster model inference. Many hardware are enhancing hardware support for low-precision computing. Next year, there will be chips that support the ARMv8.2 instruction set architecture. And we can use float16 calculations on the mobile to speed up model inference. Here is an issue #4853 (closed) about support for float16 calculation.

Multi-Thread

Multi-thread computing can be used to speed up some computationally intensive operations. However, due to the big.LITTLE architecture and power consumption issues, multi-thread in the mobile is hard to achieve the expected speed of acceleration. Here #4678 (closed) is a more detailed explanation of the mobile multi-threaded computing difficulties.

Mobile GPU

Mobile GPU performance has been greatly improved in recent years. For some computationally intensive operations, an order of magnitude acceleration can be achieved on the mobile GPU compared to the CPU. We need to add GPU computing on Paddle Mobile. Here #5469 (closed) is a more detailed explanation of why Paddle needs to support the mobile GPU.

Hardware Acceleration

On the mobile, hardware acceleration for model Inference is a trend. We need to know about libraries for Android NN, SNPE, ARM NN, etc. that can be used for hardware acceleration. And how Paddle uses these libraries for the model inference. Here is a project for this work.

Convolution optimization

Matrix multiplication optimization

Document

Benchmark

Demo

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#5782
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7