Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #5469

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 08, 2017 by saxon_zh@saxon_zhGuest

Inference Acceleration with Mobile GPU

Created by: hedaoyuan

Mobile GPU

Currently, in the mainstream mobile phone will have a GPU, and mobile GPU performance has been greatly improved in recent years. As you can see from the data in these links, Adreno 540 vs Adreno 530 vs Adreno 430, Adreno 430 vs Adreno 420, the Adreno 430 has 30% performance increase over the Adreno 420, the Adreno 530 has 30%-40% performance increase over the Adreno 430, and the Adreno 540(Release in Q2 2017) has 30%-40% performance increase over the Adreno 530. From Adreno WIKI also can see the corresponding trend.

In addition, mobile GPU has also been greatly improved in computational performance for deep learning. As you can see from this example Matrix Multiply on Adreno GPUs, based on OpenCL's matrix multiplication optimization, the performance on the Adreno 420, Adreno 430 and Adreno 530 is 44 ms, 38 ms, 23 ms for the 1024-size matrix, respectively. And with the Snapdragon NPE's GPU acceleration, in some case can achieve 5x better performance on the Adreno GPU, compared to a generic CPU implementation.

Why OpenCL

We consider using OpenCL to support Android GPU, mainly based on the following considerations.

  • OpenCL is based on the standard C/C++ language and doesn't need to rely on a special compiler.
  • All the mainstream GPUs support the development based on OpenCL, and OpenCL is also a mature solution.
  • The framework(wrapper) developed based on OpenCL, can be used to support the GPU(AMD GPU) on the server for model training acceleration.
  • Using OpenCL allows to directly interoperate with some other OpenCL libraries(like Eigen, ARM ComputeLibrary).
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#5469
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7