Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #4678

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 10月 10, 2017 by saxon_zh@saxon_zhGuest

Multi-Thread computing on mobile end

Created by: hedaoyuan

When the single-thread computing on the mobile cannot meet the performance requirements of the model inference, it will naturally expect to be accelerated by multi-thread. At present, most of the mobile phone is a multi-core system, but the hardware architecture is not the same with the general multi-core server system. So, in the actual scene, the multi-thread acceleration method used on the server cannot get the same good acceleration on the mobile side. The main reason that impact the multi-thread acceleration effect on the mobile end is as follows.

  1. The big.LITTLE architecture. Because the computational power of the big and little cores is inconsistent, if the computational tasks are evenly distributed to multiple cores, the overall computational performance is dragged down by the little cores. This has been encountered in previous experiments. https://github.com/PaddlePaddle/Paddle/wiki/2017-07-19#hedaoyuan
  2. interactive mode. On the mobile side, CPU mode is generally set as interactive instead of performance mode. When a CPU core is awakened for calculations, the core starts at low frequency, and it takes some time to run to the high frequency. So, the multi-thread computing on the mobile end, the performance of other threads is not as good as the performance of the main thread.
  3. Power limited. The mobile end generally has power limited, which may exceed the power limit when using multiple threads, leading to CPU frequency reduction, thus affecting computing performance.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#4678
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7