Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84738545
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84738545
编写于
3月 31, 2020
作者:
A
Aurelius84
提交者:
GitHub
3月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dygraph_to_static training unitTest of transformer model (#23316)
上级
420944e5
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
999 addition
and
0 deletion
+999
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py
...uid/tests/unittests/dygraph_to_static/test_transformer.py
+235
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py
.../unittests/dygraph_to_static/transformer_dygraph_model.py
+488
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py
...uid/tests/unittests/dygraph_to_static/transformer_util.py
+276
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py
0 → 100644
浏览文件 @
84738545
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
numpy
as
np
import
time
import
os
import
unittest
import
paddle.fluid
as
fluid
import
transformer_util
as
util
from
transformer_dygraph_model
import
Transformer
from
transformer_dygraph_model
import
CrossEntropyCriterion
trainer_count
=
1
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
()
else
fluid
.
CPUPlace
(
)
SEED
=
10
def
train_static
(
args
,
batch_generator
):
train_prog
=
fluid
.
default_main_program
()
startup_prog
=
fluid
.
default_startup_program
()
train_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
# define input and reader
input_field_names
=
util
.
encoder_data_input_fields
+
\
util
.
decoder_data_input_fields
[:
-
1
]
+
util
.
label_data_input_fields
input_descs
=
util
.
get_input_descs
(
args
)
input_slots
=
[{
"name"
:
name
,
"shape"
:
input_descs
[
name
][
0
],
"dtype"
:
input_descs
[
name
][
1
]
}
for
name
in
input_field_names
]
input_field
=
util
.
InputField
(
input_slots
)
# Define DataLoader
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
input_field
.
feed_list
,
capacity
=
60
)
data_loader
.
set_batch_generator
(
batch_generator
,
places
=
place
)
# define model
transformer
=
Transformer
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
,
args
.
max_length
+
1
,
args
.
n_layer
,
args
.
n_head
,
args
.
d_key
,
args
.
d_value
,
args
.
d_model
,
args
.
d_inner_hid
,
args
.
prepostprocess_dropout
,
args
.
attention_dropout
,
args
.
relu_dropout
,
args
.
preprocess_cmd
,
args
.
postprocess_cmd
,
args
.
weight_sharing
,
args
.
bos_idx
,
args
.
eos_idx
)
logits
=
transformer
(
*
input_field
.
feed_list
[:
7
])
# define loss
criterion
=
CrossEntropyCriterion
(
args
.
label_smooth_eps
)
lbl_word
,
lbl_weight
=
input_field
.
feed_list
[
7
:]
sum_cost
,
avg_cost
,
token_num
=
criterion
(
logits
,
lbl_word
,
lbl_weight
)
# define optimizer
learning_rate
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
args
.
d_model
,
args
.
warmup_steps
,
args
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
beta1
=
args
.
beta1
,
beta2
=
args
.
beta2
,
epsilon
=
float
(
args
.
eps
))
optimizer
.
minimize
(
avg_cost
)
# the best cross-entropy value with label smoothing
loss_normalizer
=
-
((
1.
-
args
.
label_smooth_eps
)
*
np
.
log
(
(
1.
-
args
.
label_smooth_eps
))
+
args
.
label_smooth_eps
*
np
.
log
(
args
.
label_smooth_eps
/
(
args
.
trg_vocab_size
-
1
)
+
1e-20
))
step_idx
=
0
total_batch_num
=
0
avg_loss
=
[]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
for
pass_id
in
range
(
args
.
epoch
):
batch_id
=
0
for
feed_dict
in
data_loader
:
outs
=
exe
.
run
(
program
=
train_prog
,
feed
=
feed_dict
,
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
])
if
step_idx
%
args
.
print_step
==
0
:
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
total_sum_cost
=
sum_cost_val
.
sum
()
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
avg_loss
.
append
(
total_avg_cost
)
if
step_idx
==
0
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
avg_batch_time
=
time
.
time
()
else
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
print_step
/
(
time
.
time
()
-
avg_batch_time
)))
avg_batch_time
=
time
.
time
()
batch_id
+=
1
step_idx
+=
1
total_batch_num
=
total_batch_num
+
1
if
step_idx
==
10
:
if
args
.
save_model
:
model_path
=
os
.
path
.
join
(
args
.
save_model
,
"step_"
+
str
(
step_idx
),
"transformer"
)
fluid
.
save
(
train_prog
,
model_path
)
break
return
np
.
array
(
avg_loss
)
def
train_dygraph
(
args
,
batch_generator
):
with
fluid
.
dygraph
.
guard
(
place
):
if
SEED
is
not
None
:
fluid
.
default_main_program
().
random_seed
=
SEED
fluid
.
default_startup_program
().
random_seed
=
SEED
# define data loader
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
10
)
train_loader
.
set_batch_generator
(
batch_generator
,
places
=
place
)
# define model
transformer
=
Transformer
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
,
args
.
max_length
+
1
,
args
.
n_layer
,
args
.
n_head
,
args
.
d_key
,
args
.
d_value
,
args
.
d_model
,
args
.
d_inner_hid
,
args
.
prepostprocess_dropout
,
args
.
attention_dropout
,
args
.
relu_dropout
,
args
.
preprocess_cmd
,
args
.
postprocess_cmd
,
args
.
weight_sharing
,
args
.
bos_idx
,
args
.
eos_idx
)
# define loss
criterion
=
CrossEntropyCriterion
(
args
.
label_smooth_eps
)
# define optimizer
learning_rate
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
args
.
d_model
,
args
.
warmup_steps
,
args
.
learning_rate
)
# define optimizer
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
beta1
=
args
.
beta1
,
beta2
=
args
.
beta2
,
epsilon
=
float
(
args
.
eps
),
parameter_list
=
transformer
.
parameters
())
# the best cross-entropy value with label smoothing
loss_normalizer
=
-
(
(
1.
-
args
.
label_smooth_eps
)
*
np
.
log
(
(
1.
-
args
.
label_smooth_eps
))
+
args
.
label_smooth_eps
*
np
.
log
(
args
.
label_smooth_eps
/
(
args
.
trg_vocab_size
-
1
)
+
1e-20
))
ce_time
=
[]
ce_ppl
=
[]
avg_loss
=
[]
step_idx
=
0
for
pass_id
in
range
(
args
.
epoch
):
pass_start_time
=
time
.
time
()
batch_id
=
0
for
input_data
in
train_loader
():
(
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
)
=
input_data
logits
=
transformer
(
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
)
sum_cost
,
avg_cost
,
token_num
=
criterion
(
logits
,
lbl_word
,
lbl_weight
)
avg_cost
.
backward
()
optimizer
.
minimize
(
avg_cost
)
transformer
.
clear_gradients
()
if
step_idx
%
args
.
print_step
==
0
:
total_avg_cost
=
avg_cost
.
numpy
()
*
trainer_count
avg_loss
.
append
(
total_avg_cost
[
0
])
if
step_idx
==
0
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
avg_batch_time
=
time
.
time
()
else
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
print_step
/
(
time
.
time
()
-
avg_batch_time
)))
ce_ppl
.
append
(
np
.
exp
([
min
(
total_avg_cost
,
100
)]))
avg_batch_time
=
time
.
time
()
batch_id
+=
1
step_idx
+=
1
if
step_idx
==
10
:
if
args
.
save_model
:
model_dir
=
os
.
path
.
join
(
args
.
save_model
+
'_dygraph'
,
"step_"
+
str
(
step_idx
))
if
not
os
.
path
.
exists
(
model_dir
):
os
.
makedirs
(
model_dir
)
fluid
.
save_dygraph
(
transformer
.
state_dict
(),
os
.
path
.
join
(
model_dir
,
"transformer"
))
fluid
.
save_dygraph
(
optimizer
.
state_dict
(),
os
.
path
.
join
(
model_dir
,
"transformer"
))
break
time_consumed
=
time
.
time
()
-
pass_start_time
ce_time
.
append
(
time_consumed
)
return
np
.
array
(
avg_loss
)
class
TestTransformer
(
unittest
.
TestCase
):
def
prepare
(
self
,
mode
=
'train'
):
args
=
util
.
ModelHyperParams
()
batch_generator
=
util
.
get_feed_data_reader
(
args
,
mode
)
return
args
,
batch_generator
def
test_train
(
self
):
args
,
batch_generator
=
self
.
prepare
(
mode
=
'train'
)
static_avg_loss
=
train_static
(
args
,
batch_generator
)
dygraph_avg_loss
=
train_dygraph
(
args
,
batch_generator
)
self
.
assertTrue
(
np
.
allclose
(
static_avg_loss
,
dygraph_avg_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py
0 → 100644
浏览文件 @
84738545
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py
0 → 100644
浏览文件 @
84738545
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
pickle
import
warnings
import
six
from
functools
import
partial
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.dataset.wmt16
as
wmt16
def
get_input_descs
(
args
):
batch_size
=
args
.
batch_size
# TODO None(before)
seq_len
=
None
n_head
=
getattr
(
args
,
"n_head"
,
8
)
d_model
=
getattr
(
args
,
"d_model"
,
512
)
input_descs
=
{
"src_word"
:
[(
batch_size
,
seq_len
),
"int64"
,
2
],
"src_pos"
:
[(
batch_size
,
seq_len
),
"int64"
],
"src_slf_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
"trg_word"
:
[(
batch_size
,
seq_len
),
"int64"
,
2
],
"trg_pos"
:
[(
batch_size
,
seq_len
),
"int64"
],
"trg_slf_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
"trg_src_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
# TODO: 1 for predict, seq_len for train
"enc_output"
:
[(
batch_size
,
seq_len
,
d_model
),
"float32"
],
"lbl_word"
:
[(
None
,
1
),
"int64"
],
"lbl_weight"
:
[(
None
,
1
),
"float32"
],
"init_score"
:
[(
batch_size
,
1
),
"float32"
,
2
],
"init_idx"
:
[(
batch_size
,
),
"int32"
],
}
return
input_descs
encoder_data_input_fields
=
(
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
)
decoder_data_input_fields
=
(
"trg_word"
,
"trg_pos"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"enc_output"
,
)
label_data_input_fields
=
(
"lbl_word"
,
"lbl_weight"
,
)
fast_decoder_data_input_fields
=
(
"trg_word"
,
"trg_src_attn_bias"
,
)
class
ModelHyperParams
(
object
):
print_step
=
2
init_from_params
=
"trained_models/step_10/"
save_model
=
"trained_models"
inference_model_dir
=
"infer_model"
output_file
=
"predict.txt"
batch_size
=
5
epoch
=
1
learning_rate
=
2.0
beta1
=
0.9
beta2
=
0.997
eps
=
1e-9
warmup_steps
=
8000
label_smooth_eps
=
0.1
beam_size
=
5
max_out_len
=
256
n_best
=
1
src_vocab_size
=
10000
trg_vocab_size
=
10000
bos_idx
=
0
# index for <bos> token
eos_idx
=
1
# index for <eos> token
unk_idx
=
2
# index for <unk> token
max_length
=
256
d_model
=
512
d_inner_hid
=
2048
d_key
=
64
d_value
=
64
n_head
=
8
n_layer
=
6
prepostprocess_dropout
=
0.1
attention_dropout
=
0.1
relu_dropout
=
0.1
preprocess_cmd
=
"n"
# layer normalization
postprocess_cmd
=
"da"
# dropout + residual connection
weight_sharing
=
True
def
pad_batch_data
(
insts
,
pad_idx
,
n_head
,
is_target
=
False
,
is_label
=
False
,
return_attn_bias
=
True
,
return_max_len
=
True
,
return_num_token
=
False
):
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
[
inst
+
[
pad_idx
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
is_label
:
# label weight
inst_weight
=
np
.
array
([[
1.
]
*
len
(
inst
)
+
[
0.
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_weight
.
astype
(
"float32"
).
reshape
([
-
1
,
1
])]
else
:
# position data
inst_pos
=
np
.
array
([
list
(
range
(
0
,
len
(
inst
)))
+
[
0
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_attn_bias
:
if
is_target
:
slf_attn_bias_data
=
np
.
ones
((
inst_data
.
shape
[
0
],
max_len
,
max_len
))
slf_attn_bias_data
=
np
.
triu
(
slf_attn_bias_data
,
1
).
reshape
([
-
1
,
1
,
max_len
,
max_len
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
,
[
1
,
n_head
,
1
,
1
])
*
[
-
1e9
]
else
:
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
1
,
max_len
]),
[
1
,
n_head
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
if
return_num_token
:
num_token
=
0
for
inst
in
insts
:
num_token
+=
len
(
inst
)
return_list
+=
[
num_token
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
prepare_train_input
(
insts
,
src_pad_idx
,
trg_pad_idx
,
n_head
):
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
True
)
trg_word
=
trg_word
.
reshape
(
-
1
,
trg_max_len
)
trg_pos
=
trg_pos
.
reshape
(
-
1
,
trg_max_len
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
lbl_word
,
lbl_weight
,
num_token
=
pad_batch_data
(
[
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
False
,
is_label
=
True
,
return_attn_bias
=
False
,
return_max_len
=
False
,
return_num_token
=
True
)
lbl_word
=
lbl_word
.
reshape
(
-
1
,
1
)
lbl_weight
=
lbl_weight
.
reshape
(
-
1
,
1
)
data_inputs
=
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]
return
data_inputs
def
prepare_infer_input
(
insts
,
src_pad_idx
,
bos_idx
,
n_head
):
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
# start tokens
trg_word
=
np
.
asarray
([[
bos_idx
]]
*
len
(
insts
),
dtype
=
"int64"
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
1
,
1
]).
astype
(
"float32"
)
trg_word
=
trg_word
.
reshape
(
-
1
,
1
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
)
data_inputs
=
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_src_attn_bias
]
return
data_inputs
def
get_feed_data_reader
(
args
,
mode
=
'train'
):
def
__for_train__
():
train_reader
=
paddle
.
batch
(
wmt16
.
train
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
),
batch_size
=
args
.
batch_size
)
for
batch
in
train_reader
():
tensors
=
prepare_train_input
(
batch
,
args
.
eos_idx
,
args
.
eos_idx
,
args
.
n_head
)
yield
tensors
def
__for_test__
():
test_reader
=
paddle
.
batch
(
wmt16
.
train
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
),
batch_size
=
args
.
batch_size
)
for
batch
in
test_reader
():
tensors
=
prepare_infer_input
(
batch
,
args
.
eos_idx
,
args
.
eos_idx
,
args
.
n_head
)
yield
tensors
return
__for_train__
if
mode
==
'train'
else
__for_test__
class
InputField
(
object
):
def
__init__
(
self
,
input_slots
):
self
.
feed_list
=
[]
for
slot
in
input_slots
:
self
.
feed_list
.
append
(
fluid
.
layers
.
data
(
name
=
slot
[
'name'
],
shape
=
slot
[
'shape'
],
dtype
=
slot
[
'dtype'
],
lod_level
=
slot
.
get
(
'lod_level'
,
0
),
append_batch_size
=
False
))
def
load
(
program
,
model_path
,
executor
=
None
,
var_list
=
None
):
"""
To load python2 saved models in python3.
"""
try
:
fluid
.
load
(
program
,
model_path
,
executor
,
var_list
)
except
UnicodeDecodeError
:
warnings
.
warn
(
"An UnicodeDecodeError is catched, which might be caused by loading "
"a python2 saved model. Encoding of pickle.load would be set and "
"load again automatically."
)
if
six
.
PY3
:
load_bak
=
pickle
.
load
pickle
.
load
=
partial
(
load_bak
,
encoding
=
"latin1"
)
fluid
.
load
(
program
,
model_path
,
executor
,
var_list
)
pickle
.
load
=
load_bak
def
load_dygraph
(
model_path
,
keep_name_table
=
False
):
"""
To load python2 saved models in python3.
"""
try
:
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
return
para_dict
,
opti_dict
except
UnicodeDecodeError
:
warnings
.
warn
(
"An UnicodeDecodeError is catched, which might be caused by loading "
"a python2 saved model. Encoding of pickle.load would be set and "
"load again automatically."
)
if
six
.
PY3
:
load_bak
=
pickle
.
load
pickle
.
load
=
partial
(
load_bak
,
encoding
=
"latin1"
)
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
pickle
.
load
=
load_bak
return
para_dict
,
opti_dict
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录