Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84738545
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84738545
编写于
3月 31, 2020
作者:
A
Aurelius84
提交者:
GitHub
3月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dygraph_to_static training unitTest of transformer model (#23316)
上级
420944e5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
999 addition
and
0 deletion
+999
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py
...uid/tests/unittests/dygraph_to_static/test_transformer.py
+235
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py
.../unittests/dygraph_to_static/transformer_dygraph_model.py
+488
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py
...uid/tests/unittests/dygraph_to_static/transformer_util.py
+276
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py
0 → 100644
浏览文件 @
84738545
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
numpy
as
np
import
time
import
os
import
unittest
import
paddle.fluid
as
fluid
import
transformer_util
as
util
from
transformer_dygraph_model
import
Transformer
from
transformer_dygraph_model
import
CrossEntropyCriterion
trainer_count
=
1
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
()
else
fluid
.
CPUPlace
(
)
SEED
=
10
def
train_static
(
args
,
batch_generator
):
train_prog
=
fluid
.
default_main_program
()
startup_prog
=
fluid
.
default_startup_program
()
train_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
# define input and reader
input_field_names
=
util
.
encoder_data_input_fields
+
\
util
.
decoder_data_input_fields
[:
-
1
]
+
util
.
label_data_input_fields
input_descs
=
util
.
get_input_descs
(
args
)
input_slots
=
[{
"name"
:
name
,
"shape"
:
input_descs
[
name
][
0
],
"dtype"
:
input_descs
[
name
][
1
]
}
for
name
in
input_field_names
]
input_field
=
util
.
InputField
(
input_slots
)
# Define DataLoader
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
input_field
.
feed_list
,
capacity
=
60
)
data_loader
.
set_batch_generator
(
batch_generator
,
places
=
place
)
# define model
transformer
=
Transformer
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
,
args
.
max_length
+
1
,
args
.
n_layer
,
args
.
n_head
,
args
.
d_key
,
args
.
d_value
,
args
.
d_model
,
args
.
d_inner_hid
,
args
.
prepostprocess_dropout
,
args
.
attention_dropout
,
args
.
relu_dropout
,
args
.
preprocess_cmd
,
args
.
postprocess_cmd
,
args
.
weight_sharing
,
args
.
bos_idx
,
args
.
eos_idx
)
logits
=
transformer
(
*
input_field
.
feed_list
[:
7
])
# define loss
criterion
=
CrossEntropyCriterion
(
args
.
label_smooth_eps
)
lbl_word
,
lbl_weight
=
input_field
.
feed_list
[
7
:]
sum_cost
,
avg_cost
,
token_num
=
criterion
(
logits
,
lbl_word
,
lbl_weight
)
# define optimizer
learning_rate
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
args
.
d_model
,
args
.
warmup_steps
,
args
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
beta1
=
args
.
beta1
,
beta2
=
args
.
beta2
,
epsilon
=
float
(
args
.
eps
))
optimizer
.
minimize
(
avg_cost
)
# the best cross-entropy value with label smoothing
loss_normalizer
=
-
((
1.
-
args
.
label_smooth_eps
)
*
np
.
log
(
(
1.
-
args
.
label_smooth_eps
))
+
args
.
label_smooth_eps
*
np
.
log
(
args
.
label_smooth_eps
/
(
args
.
trg_vocab_size
-
1
)
+
1e-20
))
step_idx
=
0
total_batch_num
=
0
avg_loss
=
[]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
for
pass_id
in
range
(
args
.
epoch
):
batch_id
=
0
for
feed_dict
in
data_loader
:
outs
=
exe
.
run
(
program
=
train_prog
,
feed
=
feed_dict
,
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
])
if
step_idx
%
args
.
print_step
==
0
:
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
total_sum_cost
=
sum_cost_val
.
sum
()
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
avg_loss
.
append
(
total_avg_cost
)
if
step_idx
==
0
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
avg_batch_time
=
time
.
time
()
else
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
print_step
/
(
time
.
time
()
-
avg_batch_time
)))
avg_batch_time
=
time
.
time
()
batch_id
+=
1
step_idx
+=
1
total_batch_num
=
total_batch_num
+
1
if
step_idx
==
10
:
if
args
.
save_model
:
model_path
=
os
.
path
.
join
(
args
.
save_model
,
"step_"
+
str
(
step_idx
),
"transformer"
)
fluid
.
save
(
train_prog
,
model_path
)
break
return
np
.
array
(
avg_loss
)
def
train_dygraph
(
args
,
batch_generator
):
with
fluid
.
dygraph
.
guard
(
place
):
if
SEED
is
not
None
:
fluid
.
default_main_program
().
random_seed
=
SEED
fluid
.
default_startup_program
().
random_seed
=
SEED
# define data loader
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
10
)
train_loader
.
set_batch_generator
(
batch_generator
,
places
=
place
)
# define model
transformer
=
Transformer
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
,
args
.
max_length
+
1
,
args
.
n_layer
,
args
.
n_head
,
args
.
d_key
,
args
.
d_value
,
args
.
d_model
,
args
.
d_inner_hid
,
args
.
prepostprocess_dropout
,
args
.
attention_dropout
,
args
.
relu_dropout
,
args
.
preprocess_cmd
,
args
.
postprocess_cmd
,
args
.
weight_sharing
,
args
.
bos_idx
,
args
.
eos_idx
)
# define loss
criterion
=
CrossEntropyCriterion
(
args
.
label_smooth_eps
)
# define optimizer
learning_rate
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
args
.
d_model
,
args
.
warmup_steps
,
args
.
learning_rate
)
# define optimizer
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
beta1
=
args
.
beta1
,
beta2
=
args
.
beta2
,
epsilon
=
float
(
args
.
eps
),
parameter_list
=
transformer
.
parameters
())
# the best cross-entropy value with label smoothing
loss_normalizer
=
-
(
(
1.
-
args
.
label_smooth_eps
)
*
np
.
log
(
(
1.
-
args
.
label_smooth_eps
))
+
args
.
label_smooth_eps
*
np
.
log
(
args
.
label_smooth_eps
/
(
args
.
trg_vocab_size
-
1
)
+
1e-20
))
ce_time
=
[]
ce_ppl
=
[]
avg_loss
=
[]
step_idx
=
0
for
pass_id
in
range
(
args
.
epoch
):
pass_start_time
=
time
.
time
()
batch_id
=
0
for
input_data
in
train_loader
():
(
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
)
=
input_data
logits
=
transformer
(
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
)
sum_cost
,
avg_cost
,
token_num
=
criterion
(
logits
,
lbl_word
,
lbl_weight
)
avg_cost
.
backward
()
optimizer
.
minimize
(
avg_cost
)
transformer
.
clear_gradients
()
if
step_idx
%
args
.
print_step
==
0
:
total_avg_cost
=
avg_cost
.
numpy
()
*
trainer_count
avg_loss
.
append
(
total_avg_cost
[
0
])
if
step_idx
==
0
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
avg_batch_time
=
time
.
time
()
else
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
print_step
/
(
time
.
time
()
-
avg_batch_time
)))
ce_ppl
.
append
(
np
.
exp
([
min
(
total_avg_cost
,
100
)]))
avg_batch_time
=
time
.
time
()
batch_id
+=
1
step_idx
+=
1
if
step_idx
==
10
:
if
args
.
save_model
:
model_dir
=
os
.
path
.
join
(
args
.
save_model
+
'_dygraph'
,
"step_"
+
str
(
step_idx
))
if
not
os
.
path
.
exists
(
model_dir
):
os
.
makedirs
(
model_dir
)
fluid
.
save_dygraph
(
transformer
.
state_dict
(),
os
.
path
.
join
(
model_dir
,
"transformer"
))
fluid
.
save_dygraph
(
optimizer
.
state_dict
(),
os
.
path
.
join
(
model_dir
,
"transformer"
))
break
time_consumed
=
time
.
time
()
-
pass_start_time
ce_time
.
append
(
time_consumed
)
return
np
.
array
(
avg_loss
)
class
TestTransformer
(
unittest
.
TestCase
):
def
prepare
(
self
,
mode
=
'train'
):
args
=
util
.
ModelHyperParams
()
batch_generator
=
util
.
get_feed_data_reader
(
args
,
mode
)
return
args
,
batch_generator
def
test_train
(
self
):
args
,
batch_generator
=
self
.
prepare
(
mode
=
'train'
)
static_avg_loss
=
train_static
(
args
,
batch_generator
)
dygraph_avg_loss
=
train_dygraph
(
args
,
batch_generator
)
self
.
assertTrue
(
np
.
allclose
(
static_avg_loss
,
dygraph_avg_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py
0 → 100644
浏览文件 @
84738545
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
from
paddle.fluid.dygraph.jit
import
dygraph_to_static_func
def
position_encoding_init
(
n_position
,
d_pos_vec
):
"""
Generate the initial values for the sinusoid position encoding table.
"""
channels
=
d_pos_vec
position
=
np
.
arange
(
n_position
)
num_timescales
=
channels
//
2
log_timescale_increment
=
(
np
.
log
(
float
(
1e4
)
/
float
(
1
))
/
(
num_timescales
-
1
))
inv_timescales
=
np
.
exp
(
np
.
arange
(
num_timescales
))
*
-
log_timescale_increment
scaled_time
=
np
.
expand_dims
(
position
,
1
)
*
np
.
expand_dims
(
inv_timescales
,
0
)
signal
=
np
.
concatenate
([
np
.
sin
(
scaled_time
),
np
.
cos
(
scaled_time
)],
axis
=
1
)
signal
=
np
.
pad
(
signal
,
[[
0
,
0
],
[
0
,
np
.
mod
(
channels
,
2
)]],
'constant'
)
position_enc
=
signal
return
position_enc
.
astype
(
"float32"
)
class
PrePostProcessLayer
(
Layer
):
def
__init__
(
self
,
process_cmd
,
d_model
,
dropout_rate
):
super
(
PrePostProcessLayer
,
self
).
__init__
()
self
.
process_cmd
=
process_cmd
self
.
functors
=
[]
for
cmd
in
self
.
process_cmd
:
if
cmd
==
"a"
:
# add residual connection
self
.
functors
.
append
(
lambda
x
,
y
:
x
+
y
if
y
else
x
)
elif
cmd
==
"n"
:
# add layer normalization
self
.
functors
.
append
(
self
.
add_sublayer
(
"layer_norm_%d"
%
len
(
self
.
sublayers
(
include_sublayers
=
False
)),
LayerNorm
(
normalized_shape
=
d_model
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))))
elif
cmd
==
"d"
:
# add dropout
if
dropout_rate
:
self
.
functors
.
append
(
lambda
x
:
layers
.
dropout
(
x
,
dropout_prob
=
dropout_rate
,
is_test
=
False
))
@
dygraph_to_static_func
def
forward
(
self
,
x
,
residual
=
None
):
for
i
,
cmd
in
enumerate
(
self
.
process_cmd
):
if
cmd
==
"a"
:
x
=
self
.
functors
[
i
](
x
,
residual
)
else
:
x
=
self
.
functors
[
i
](
x
)
return
x
class
MultiHeadAttention
(
Layer
):
def
__init__
(
self
,
d_key
,
d_value
,
d_model
,
n_head
=
1
,
dropout_rate
=
0.
):
super
(
MultiHeadAttention
,
self
).
__init__
()
self
.
n_head
=
n_head
self
.
d_key
=
d_key
self
.
d_value
=
d_value
self
.
d_model
=
d_model
self
.
dropout_rate
=
dropout_rate
self
.
q_fc
=
Linear
(
input_dim
=
d_model
,
output_dim
=
d_key
*
n_head
,
bias_attr
=
False
)
self
.
k_fc
=
Linear
(
input_dim
=
d_model
,
output_dim
=
d_key
*
n_head
,
bias_attr
=
False
)
self
.
v_fc
=
Linear
(
input_dim
=
d_model
,
output_dim
=
d_value
*
n_head
,
bias_attr
=
False
)
self
.
proj_fc
=
Linear
(
input_dim
=
d_value
*
n_head
,
output_dim
=
d_model
,
bias_attr
=
False
)
@
dygraph_to_static_func
def
forward
(
self
,
queries
,
keys
,
values
,
attn_bias
,
cache
=
None
):
# compute q ,k ,v
keys
=
queries
if
keys
is
None
else
keys
values
=
keys
if
values
is
None
else
values
q
=
self
.
q_fc
(
queries
)
k
=
self
.
k_fc
(
keys
)
v
=
self
.
v_fc
(
values
)
# split head
q
=
layers
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
n_head
,
self
.
d_key
])
q
=
layers
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
k
=
layers
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
n_head
,
self
.
d_key
])
k
=
layers
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
layers
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
n_head
,
self
.
d_value
])
v
=
layers
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
if
cache
is
not
None
:
cache_k
,
cache_v
=
cache
[
"k"
],
cache
[
"v"
]
k
=
layers
.
concat
([
cache_k
,
k
],
axis
=
2
)
v
=
layers
.
concat
([
cache_v
,
v
],
axis
=
2
)
cache
[
"k"
],
cache
[
"v"
]
=
k
,
v
# scale dot product attention
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
d_model
**-
0.5
)
if
attn_bias
:
product
+=
attn_bias
weights
=
layers
.
softmax
(
product
)
if
self
.
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
self
.
dropout_rate
,
is_test
=
False
)
out
=
layers
.
matmul
(
weights
,
v
)
out
=
layers
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
layers
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
out
=
self
.
proj_fc
(
out
)
return
out
class
FFN
(
Layer
):
def
__init__
(
self
,
d_inner_hid
,
d_model
,
dropout_rate
):
super
(
FFN
,
self
).
__init__
()
self
.
dropout_rate
=
dropout_rate
self
.
fc1
=
Linear
(
input_dim
=
d_model
,
output_dim
=
d_inner_hid
,
act
=
"relu"
)
self
.
fc2
=
Linear
(
input_dim
=
d_inner_hid
,
output_dim
=
d_model
)
@
dygraph_to_static_func
def
forward
(
self
,
x
):
hidden
=
self
.
fc1
(
x
)
if
self
.
dropout_rate
:
hidden
=
layers
.
dropout
(
hidden
,
dropout_prob
=
self
.
dropout_rate
,
is_test
=
False
)
out
=
self
.
fc2
(
hidden
)
return
out
class
EncoderLayer
(
Layer
):
def
__init__
(
self
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
=
"n"
,
postprocess_cmd
=
"da"
):
super
(
EncoderLayer
,
self
).
__init__
()
self
.
preprocesser1
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
self_attn
=
MultiHeadAttention
(
d_key
,
d_value
,
d_model
,
n_head
,
attention_dropout
)
self
.
postprocesser1
=
PrePostProcessLayer
(
postprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
preprocesser2
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
ffn
=
FFN
(
d_inner_hid
,
d_model
,
relu_dropout
)
self
.
postprocesser2
=
PrePostProcessLayer
(
postprocess_cmd
,
d_model
,
prepostprocess_dropout
)
@
dygraph_to_static_func
def
forward
(
self
,
enc_input
,
attn_bias
):
attn_output
=
self
.
self_attn
(
self
.
preprocesser1
(
enc_input
),
None
,
None
,
attn_bias
)
attn_output
=
self
.
postprocesser1
(
attn_output
,
enc_input
)
ffn_output
=
self
.
ffn
(
self
.
preprocesser2
(
attn_output
))
ffn_output
=
self
.
postprocesser2
(
ffn_output
,
attn_output
)
return
ffn_output
class
Encoder
(
Layer
):
def
__init__
(
self
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
=
"n"
,
postprocess_cmd
=
"da"
):
super
(
Encoder
,
self
).
__init__
()
self
.
encoder_layers
=
list
()
for
i
in
range
(
n_layer
):
self
.
encoder_layers
.
append
(
self
.
add_sublayer
(
"layer_%d"
%
i
,
EncoderLayer
(
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
)))
self
.
processer
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
@
dygraph_to_static_func
def
forward
(
self
,
enc_input
,
attn_bias
):
for
encoder_layer
in
self
.
encoder_layers
:
enc_output
=
encoder_layer
(
enc_input
,
attn_bias
)
enc_input
=
enc_output
return
self
.
processer
(
enc_output
)
class
Embedder
(
Layer
):
def
__init__
(
self
,
vocab_size
,
emb_dim
,
bos_idx
=
0
):
super
(
Embedder
,
self
).
__init__
()
self
.
word_embedder
=
Embedding
(
size
=
[
vocab_size
,
emb_dim
],
padding_idx
=
bos_idx
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
emb_dim
**-
0.5
)))
@
dygraph_to_static_func
def
forward
(
self
,
word
):
word_emb
=
self
.
word_embedder
(
word
)
return
word_emb
class
WrapEncoder
(
Layer
):
def
__init__
(
self
,
src_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
,
word_embedder
):
super
(
WrapEncoder
,
self
).
__init__
()
self
.
emb_dropout
=
prepostprocess_dropout
self
.
emb_dim
=
d_model
self
.
word_embedder
=
word_embedder
self
.
pos_encoder
=
Embedding
(
size
=
[
max_length
,
self
.
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
position_encoding_init
(
max_length
,
self
.
emb_dim
)),
trainable
=
False
))
self
.
encoder
=
Encoder
(
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
)
@
dygraph_to_static_func
def
forward
(
self
,
src_word
,
src_pos
,
src_slf_attn_bias
):
word_emb
=
self
.
word_embedder
(
src_word
)
word_emb
=
layers
.
scale
(
x
=
word_emb
,
scale
=
self
.
emb_dim
**
0.5
)
pos_enc
=
self
.
pos_encoder
(
src_pos
)
pos_enc
.
stop_gradient
=
True
emb
=
word_emb
+
pos_enc
enc_input
=
layers
.
dropout
(
emb
,
dropout_prob
=
self
.
emb_dropout
,
is_test
=
False
)
if
self
.
emb_dropout
else
emb
enc_output
=
self
.
encoder
(
enc_input
,
src_slf_attn_bias
)
return
enc_output
class
DecoderLayer
(
Layer
):
def
__init__
(
self
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
=
"n"
,
postprocess_cmd
=
"da"
):
super
(
DecoderLayer
,
self
).
__init__
()
self
.
preprocesser1
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
self_attn
=
MultiHeadAttention
(
d_key
,
d_value
,
d_model
,
n_head
,
attention_dropout
)
self
.
postprocesser1
=
PrePostProcessLayer
(
postprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
preprocesser2
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
cross_attn
=
MultiHeadAttention
(
d_key
,
d_value
,
d_model
,
n_head
,
attention_dropout
)
self
.
postprocesser2
=
PrePostProcessLayer
(
postprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
preprocesser3
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
self
.
ffn
=
FFN
(
d_inner_hid
,
d_model
,
relu_dropout
)
self
.
postprocesser3
=
PrePostProcessLayer
(
postprocess_cmd
,
d_model
,
prepostprocess_dropout
)
@
dygraph_to_static_func
def
forward
(
self
,
dec_input
,
enc_output
,
self_attn_bias
,
cross_attn_bias
,
cache
=
None
):
self_attn_output
=
self
.
self_attn
(
self
.
preprocesser1
(
dec_input
),
None
,
None
,
self_attn_bias
,
cache
)
self_attn_output
=
self
.
postprocesser1
(
self_attn_output
,
dec_input
)
cross_attn_output
=
self
.
cross_attn
(
self
.
preprocesser2
(
self_attn_output
),
enc_output
,
enc_output
,
cross_attn_bias
)
cross_attn_output
=
self
.
postprocesser2
(
cross_attn_output
,
self_attn_output
)
ffn_output
=
self
.
ffn
(
self
.
preprocesser3
(
cross_attn_output
))
ffn_output
=
self
.
postprocesser3
(
ffn_output
,
cross_attn_output
)
return
ffn_output
class
Decoder
(
Layer
):
def
__init__
(
self
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
):
super
(
Decoder
,
self
).
__init__
()
self
.
decoder_layers
=
list
()
for
i
in
range
(
n_layer
):
self
.
decoder_layers
.
append
(
self
.
add_sublayer
(
"layer_%d"
%
i
,
DecoderLayer
(
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
)))
self
.
processer
=
PrePostProcessLayer
(
preprocess_cmd
,
d_model
,
prepostprocess_dropout
)
@
dygraph_to_static_func
def
forward
(
self
,
dec_input
,
enc_output
,
self_attn_bias
,
cross_attn_bias
,
caches
=
None
):
for
i
,
decoder_layer
in
enumerate
(
self
.
decoder_layers
):
dec_output
=
decoder_layer
(
dec_input
,
enc_output
,
self_attn_bias
,
cross_attn_bias
,
None
if
caches
is
None
else
caches
[
i
])
dec_input
=
dec_output
return
self
.
processer
(
dec_output
)
class
WrapDecoder
(
Layer
):
def
__init__
(
self
,
trg_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
,
share_input_output_embed
,
word_embedder
):
super
(
WrapDecoder
,
self
).
__init__
()
self
.
emb_dropout
=
prepostprocess_dropout
self
.
emb_dim
=
d_model
self
.
word_embedder
=
word_embedder
self
.
pos_encoder
=
Embedding
(
size
=
[
max_length
,
self
.
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
position_encoding_init
(
max_length
,
self
.
emb_dim
)),
trainable
=
False
))
self
.
decoder
=
Decoder
(
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
)
if
share_input_output_embed
:
self
.
linear
=
lambda
x
:
layers
.
matmul
(
x
=
x
,
y
=
self
.
word_embedder
.
word_embedder
.
weight
,
transpose_y
=
True
)
else
:
self
.
linear
=
Linear
(
input_dim
=
d_model
,
output_dim
=
trg_vocab_size
,
bias_attr
=
False
)
@
dygraph_to_static_func
def
forward
(
self
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
,
caches
=
None
):
word_emb
=
self
.
word_embedder
(
trg_word
)
word_emb
=
layers
.
scale
(
x
=
word_emb
,
scale
=
self
.
emb_dim
**
0.5
)
pos_enc
=
self
.
pos_encoder
(
trg_pos
)
pos_enc
.
stop_gradient
=
True
emb
=
word_emb
+
pos_enc
dec_input
=
layers
.
dropout
(
emb
,
dropout_prob
=
self
.
emb_dropout
,
is_test
=
False
)
if
self
.
emb_dropout
else
emb
dec_output
=
self
.
decoder
(
dec_input
,
enc_output
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
caches
)
dec_output
=
layers
.
reshape
(
dec_output
,
shape
=
[
-
1
,
dec_output
.
shape
[
-
1
]],
)
logits
=
self
.
linear
(
dec_output
)
return
logits
class
CrossEntropyCriterion
(
object
):
def
__init__
(
self
,
label_smooth_eps
):
self
.
label_smooth_eps
=
label_smooth_eps
@
dygraph_to_static_func
def
__call__
(
self
,
predict
,
label
,
weights
):
if
self
.
label_smooth_eps
:
label_out
=
layers
.
label_smooth
(
label
=
layers
.
one_hot
(
input
=
label
,
depth
=
predict
.
shape
[
-
1
]),
epsilon
=
self
.
label_smooth_eps
)
cost
=
layers
.
softmax_with_cross_entropy
(
logits
=
predict
,
label
=
label_out
,
soft_label
=
True
if
self
.
label_smooth_eps
else
False
)
weighted_cost
=
cost
*
weights
sum_cost
=
layers
.
reduce_sum
(
weighted_cost
)
token_num
=
layers
.
reduce_sum
(
weights
)
token_num
.
stop_gradient
=
True
avg_cost
=
sum_cost
/
token_num
return
sum_cost
,
avg_cost
,
token_num
class
Transformer
(
Layer
):
def
__init__
(
self
,
src_vocab_size
,
trg_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
,
weight_sharing
,
bos_id
=
0
,
eos_id
=
1
):
super
(
Transformer
,
self
).
__init__
()
src_word_embedder
=
Embedder
(
vocab_size
=
src_vocab_size
,
emb_dim
=
d_model
,
bos_idx
=
bos_id
)
self
.
encoder
=
WrapEncoder
(
src_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
,
src_word_embedder
)
if
weight_sharing
:
assert
src_vocab_size
==
trg_vocab_size
,
(
"Vocabularies in source and target should be same for weight sharing."
)
trg_word_embedder
=
src_word_embedder
else
:
trg_word_embedder
=
Embedder
(
vocab_size
=
trg_vocab_size
,
emb_dim
=
d_model
,
bos_idx
=
bos_id
)
self
.
decoder
=
WrapDecoder
(
trg_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
prepostprocess_dropout
,
attention_dropout
,
relu_dropout
,
preprocess_cmd
,
postprocess_cmd
,
weight_sharing
,
trg_word_embedder
)
self
.
trg_vocab_size
=
trg_vocab_size
self
.
n_layer
=
n_layer
self
.
n_head
=
n_head
self
.
d_key
=
d_key
self
.
d_value
=
d_value
@
dygraph_to_static_func
def
forward
(
self
,
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
):
enc_output
=
self
.
encoder
(
src_word
,
src_pos
,
src_slf_attn_bias
)
predict
=
self
.
decoder
(
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
)
return
predict
python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py
0 → 100644
浏览文件 @
84738545
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
pickle
import
warnings
import
six
from
functools
import
partial
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.dataset.wmt16
as
wmt16
def
get_input_descs
(
args
):
batch_size
=
args
.
batch_size
# TODO None(before)
seq_len
=
None
n_head
=
getattr
(
args
,
"n_head"
,
8
)
d_model
=
getattr
(
args
,
"d_model"
,
512
)
input_descs
=
{
"src_word"
:
[(
batch_size
,
seq_len
),
"int64"
,
2
],
"src_pos"
:
[(
batch_size
,
seq_len
),
"int64"
],
"src_slf_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
"trg_word"
:
[(
batch_size
,
seq_len
),
"int64"
,
2
],
"trg_pos"
:
[(
batch_size
,
seq_len
),
"int64"
],
"trg_slf_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
"trg_src_attn_bias"
:
[(
batch_size
,
n_head
,
seq_len
,
seq_len
),
"float32"
],
# TODO: 1 for predict, seq_len for train
"enc_output"
:
[(
batch_size
,
seq_len
,
d_model
),
"float32"
],
"lbl_word"
:
[(
None
,
1
),
"int64"
],
"lbl_weight"
:
[(
None
,
1
),
"float32"
],
"init_score"
:
[(
batch_size
,
1
),
"float32"
,
2
],
"init_idx"
:
[(
batch_size
,
),
"int32"
],
}
return
input_descs
encoder_data_input_fields
=
(
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
)
decoder_data_input_fields
=
(
"trg_word"
,
"trg_pos"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"enc_output"
,
)
label_data_input_fields
=
(
"lbl_word"
,
"lbl_weight"
,
)
fast_decoder_data_input_fields
=
(
"trg_word"
,
"trg_src_attn_bias"
,
)
class
ModelHyperParams
(
object
):
print_step
=
2
init_from_params
=
"trained_models/step_10/"
save_model
=
"trained_models"
inference_model_dir
=
"infer_model"
output_file
=
"predict.txt"
batch_size
=
5
epoch
=
1
learning_rate
=
2.0
beta1
=
0.9
beta2
=
0.997
eps
=
1e-9
warmup_steps
=
8000
label_smooth_eps
=
0.1
beam_size
=
5
max_out_len
=
256
n_best
=
1
src_vocab_size
=
10000
trg_vocab_size
=
10000
bos_idx
=
0
# index for <bos> token
eos_idx
=
1
# index for <eos> token
unk_idx
=
2
# index for <unk> token
max_length
=
256
d_model
=
512
d_inner_hid
=
2048
d_key
=
64
d_value
=
64
n_head
=
8
n_layer
=
6
prepostprocess_dropout
=
0.1
attention_dropout
=
0.1
relu_dropout
=
0.1
preprocess_cmd
=
"n"
# layer normalization
postprocess_cmd
=
"da"
# dropout + residual connection
weight_sharing
=
True
def
pad_batch_data
(
insts
,
pad_idx
,
n_head
,
is_target
=
False
,
is_label
=
False
,
return_attn_bias
=
True
,
return_max_len
=
True
,
return_num_token
=
False
):
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
[
inst
+
[
pad_idx
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
is_label
:
# label weight
inst_weight
=
np
.
array
([[
1.
]
*
len
(
inst
)
+
[
0.
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_weight
.
astype
(
"float32"
).
reshape
([
-
1
,
1
])]
else
:
# position data
inst_pos
=
np
.
array
([
list
(
range
(
0
,
len
(
inst
)))
+
[
0
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_attn_bias
:
if
is_target
:
slf_attn_bias_data
=
np
.
ones
((
inst_data
.
shape
[
0
],
max_len
,
max_len
))
slf_attn_bias_data
=
np
.
triu
(
slf_attn_bias_data
,
1
).
reshape
([
-
1
,
1
,
max_len
,
max_len
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
,
[
1
,
n_head
,
1
,
1
])
*
[
-
1e9
]
else
:
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
1
,
max_len
]),
[
1
,
n_head
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
if
return_num_token
:
num_token
=
0
for
inst
in
insts
:
num_token
+=
len
(
inst
)
return_list
+=
[
num_token
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
prepare_train_input
(
insts
,
src_pad_idx
,
trg_pad_idx
,
n_head
):
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
True
)
trg_word
=
trg_word
.
reshape
(
-
1
,
trg_max_len
)
trg_pos
=
trg_pos
.
reshape
(
-
1
,
trg_max_len
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
lbl_word
,
lbl_weight
,
num_token
=
pad_batch_data
(
[
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
False
,
is_label
=
True
,
return_attn_bias
=
False
,
return_max_len
=
False
,
return_num_token
=
True
)
lbl_word
=
lbl_word
.
reshape
(
-
1
,
1
)
lbl_weight
=
lbl_weight
.
reshape
(
-
1
,
1
)
data_inputs
=
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]
return
data_inputs
def
prepare_infer_input
(
insts
,
src_pad_idx
,
bos_idx
,
n_head
):
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
# start tokens
trg_word
=
np
.
asarray
([[
bos_idx
]]
*
len
(
insts
),
dtype
=
"int64"
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
1
,
1
]).
astype
(
"float32"
)
trg_word
=
trg_word
.
reshape
(
-
1
,
1
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
)
data_inputs
=
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_src_attn_bias
]
return
data_inputs
def
get_feed_data_reader
(
args
,
mode
=
'train'
):
def
__for_train__
():
train_reader
=
paddle
.
batch
(
wmt16
.
train
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
),
batch_size
=
args
.
batch_size
)
for
batch
in
train_reader
():
tensors
=
prepare_train_input
(
batch
,
args
.
eos_idx
,
args
.
eos_idx
,
args
.
n_head
)
yield
tensors
def
__for_test__
():
test_reader
=
paddle
.
batch
(
wmt16
.
train
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
),
batch_size
=
args
.
batch_size
)
for
batch
in
test_reader
():
tensors
=
prepare_infer_input
(
batch
,
args
.
eos_idx
,
args
.
eos_idx
,
args
.
n_head
)
yield
tensors
return
__for_train__
if
mode
==
'train'
else
__for_test__
class
InputField
(
object
):
def
__init__
(
self
,
input_slots
):
self
.
feed_list
=
[]
for
slot
in
input_slots
:
self
.
feed_list
.
append
(
fluid
.
layers
.
data
(
name
=
slot
[
'name'
],
shape
=
slot
[
'shape'
],
dtype
=
slot
[
'dtype'
],
lod_level
=
slot
.
get
(
'lod_level'
,
0
),
append_batch_size
=
False
))
def
load
(
program
,
model_path
,
executor
=
None
,
var_list
=
None
):
"""
To load python2 saved models in python3.
"""
try
:
fluid
.
load
(
program
,
model_path
,
executor
,
var_list
)
except
UnicodeDecodeError
:
warnings
.
warn
(
"An UnicodeDecodeError is catched, which might be caused by loading "
"a python2 saved model. Encoding of pickle.load would be set and "
"load again automatically."
)
if
six
.
PY3
:
load_bak
=
pickle
.
load
pickle
.
load
=
partial
(
load_bak
,
encoding
=
"latin1"
)
fluid
.
load
(
program
,
model_path
,
executor
,
var_list
)
pickle
.
load
=
load_bak
def
load_dygraph
(
model_path
,
keep_name_table
=
False
):
"""
To load python2 saved models in python3.
"""
try
:
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
return
para_dict
,
opti_dict
except
UnicodeDecodeError
:
warnings
.
warn
(
"An UnicodeDecodeError is catched, which might be caused by loading "
"a python2 saved model. Encoding of pickle.load would be set and "
"load again automatically."
)
if
six
.
PY3
:
load_bak
=
pickle
.
load
pickle
.
load
=
partial
(
load_bak
,
encoding
=
"latin1"
)
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
pickle
.
load
=
load_bak
return
para_dict
,
opti_dict
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录