diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..604b24439a2a25dd881b553ea1c5f666fcfb99e9 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_transformer.py @@ -0,0 +1,235 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +import numpy as np +import time +import os +import unittest + +import paddle.fluid as fluid + +import transformer_util as util +from transformer_dygraph_model import Transformer +from transformer_dygraph_model import CrossEntropyCriterion + +trainer_count = 1 +place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace( +) +SEED = 10 + + +def train_static(args, batch_generator): + train_prog = fluid.default_main_program() + startup_prog = fluid.default_startup_program() + train_prog.random_seed = SEED + startup_prog.random_seed = SEED + with fluid.program_guard(train_prog, startup_prog): + with fluid.unique_name.guard(): + # define input and reader + input_field_names = util.encoder_data_input_fields + \ + util.decoder_data_input_fields[:-1] + util.label_data_input_fields + input_descs = util.get_input_descs(args) + input_slots = [{ + "name": name, + "shape": input_descs[name][0], + "dtype": input_descs[name][1] + } for name in input_field_names] + input_field = util.InputField(input_slots) + # Define DataLoader + data_loader = fluid.io.DataLoader.from_generator( + input_field.feed_list, capacity=60) + data_loader.set_batch_generator(batch_generator, places=place) + # define model + transformer = Transformer( + args.src_vocab_size, args.trg_vocab_size, args.max_length + 1, + args.n_layer, args.n_head, args.d_key, args.d_value, + args.d_model, args.d_inner_hid, args.prepostprocess_dropout, + args.attention_dropout, args.relu_dropout, args.preprocess_cmd, + args.postprocess_cmd, args.weight_sharing, args.bos_idx, + args.eos_idx) + logits = transformer(*input_field.feed_list[:7]) + # define loss + criterion = CrossEntropyCriterion(args.label_smooth_eps) + lbl_word, lbl_weight = input_field.feed_list[7:] + sum_cost, avg_cost, token_num = criterion(logits, lbl_word, + lbl_weight) + # define optimizer + learning_rate = fluid.layers.learning_rate_scheduler.noam_decay( + args.d_model, args.warmup_steps, args.learning_rate) + optimizer = fluid.optimizer.Adam( + learning_rate=learning_rate, + beta1=args.beta1, + beta2=args.beta2, + epsilon=float(args.eps)) + optimizer.minimize(avg_cost) + # the best cross-entropy value with label smoothing + loss_normalizer = -((1. - args.label_smooth_eps) * np.log( + (1. - args.label_smooth_eps)) + args.label_smooth_eps * np.log( + args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20)) + step_idx = 0 + total_batch_num = 0 + avg_loss = [] + exe = fluid.Executor(place) + exe.run(startup_prog) + for pass_id in range(args.epoch): + batch_id = 0 + for feed_dict in data_loader: + outs = exe.run(program=train_prog, + feed=feed_dict, + fetch_list=[sum_cost.name, token_num.name]) + if step_idx % args.print_step == 0: + sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[ + 1]) + total_sum_cost = sum_cost_val.sum() + total_token_num = token_num_val.sum() + total_avg_cost = total_sum_cost / total_token_num + avg_loss.append(total_avg_cost) + if step_idx == 0: + logging.info( + "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " + "normalized loss: %f, ppl: %f" % + (step_idx, pass_id, batch_id, total_avg_cost, + total_avg_cost - loss_normalizer, + np.exp([min(total_avg_cost, 100)]))) + avg_batch_time = time.time() + else: + logging.info( + "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " + "normalized loss: %f, ppl: %f, speed: %.2f step/s" % + (step_idx, pass_id, batch_id, total_avg_cost, + total_avg_cost - loss_normalizer, + np.exp([min(total_avg_cost, 100)]), + args.print_step / (time.time() - avg_batch_time))) + avg_batch_time = time.time() + batch_id += 1 + step_idx += 1 + total_batch_num = total_batch_num + 1 + if step_idx == 10: + if args.save_model: + model_path = os.path.join( + args.save_model, "step_" + str(step_idx), "transformer") + fluid.save(train_prog, model_path) + break + return np.array(avg_loss) + + +def train_dygraph(args, batch_generator): + with fluid.dygraph.guard(place): + if SEED is not None: + fluid.default_main_program().random_seed = SEED + fluid.default_startup_program().random_seed = SEED + # define data loader + train_loader = fluid.io.DataLoader.from_generator(capacity=10) + train_loader.set_batch_generator(batch_generator, places=place) + # define model + transformer = Transformer( + args.src_vocab_size, args.trg_vocab_size, args.max_length + 1, + args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model, + args.d_inner_hid, args.prepostprocess_dropout, + args.attention_dropout, args.relu_dropout, args.preprocess_cmd, + args.postprocess_cmd, args.weight_sharing, args.bos_idx, + args.eos_idx) + # define loss + criterion = CrossEntropyCriterion(args.label_smooth_eps) + # define optimizer + learning_rate = fluid.layers.learning_rate_scheduler.noam_decay( + args.d_model, args.warmup_steps, args.learning_rate) + # define optimizer + optimizer = fluid.optimizer.Adam( + learning_rate=learning_rate, + beta1=args.beta1, + beta2=args.beta2, + epsilon=float(args.eps), + parameter_list=transformer.parameters()) + # the best cross-entropy value with label smoothing + loss_normalizer = -( + (1. - args.label_smooth_eps) * np.log( + (1. - args.label_smooth_eps)) + args.label_smooth_eps * + np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20)) + ce_time = [] + ce_ppl = [] + avg_loss = [] + step_idx = 0 + for pass_id in range(args.epoch): + pass_start_time = time.time() + batch_id = 0 + for input_data in train_loader(): + (src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, + trg_slf_attn_bias, trg_src_attn_bias, lbl_word, + lbl_weight) = input_data + logits = transformer(src_word, src_pos, src_slf_attn_bias, + trg_word, trg_pos, trg_slf_attn_bias, + trg_src_attn_bias) + sum_cost, avg_cost, token_num = criterion(logits, lbl_word, + lbl_weight) + avg_cost.backward() + optimizer.minimize(avg_cost) + transformer.clear_gradients() + if step_idx % args.print_step == 0: + total_avg_cost = avg_cost.numpy() * trainer_count + avg_loss.append(total_avg_cost[0]) + if step_idx == 0: + logging.info( + "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " + "normalized loss: %f, ppl: %f" % + (step_idx, pass_id, batch_id, total_avg_cost, + total_avg_cost - loss_normalizer, + np.exp([min(total_avg_cost, 100)]))) + avg_batch_time = time.time() + else: + logging.info( + "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " + "normalized loss: %f, ppl: %f, speed: %.2f step/s" % + (step_idx, pass_id, batch_id, total_avg_cost, + total_avg_cost - loss_normalizer, + np.exp([min(total_avg_cost, 100)]), + args.print_step / (time.time() - avg_batch_time))) + ce_ppl.append(np.exp([min(total_avg_cost, 100)])) + avg_batch_time = time.time() + batch_id += 1 + step_idx += 1 + if step_idx == 10: + if args.save_model: + model_dir = os.path.join(args.save_model + '_dygraph', + "step_" + str(step_idx)) + if not os.path.exists(model_dir): + os.makedirs(model_dir) + fluid.save_dygraph( + transformer.state_dict(), + os.path.join(model_dir, "transformer")) + fluid.save_dygraph( + optimizer.state_dict(), + os.path.join(model_dir, "transformer")) + break + time_consumed = time.time() - pass_start_time + ce_time.append(time_consumed) + return np.array(avg_loss) + + +class TestTransformer(unittest.TestCase): + def prepare(self, mode='train'): + args = util.ModelHyperParams() + batch_generator = util.get_feed_data_reader(args, mode) + return args, batch_generator + + def test_train(self): + args, batch_generator = self.prepare(mode='train') + static_avg_loss = train_static(args, batch_generator) + dygraph_avg_loss = train_dygraph(args, batch_generator) + self.assertTrue(np.allclose(static_avg_loss, dygraph_avg_loss)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py new file mode 100644 index 0000000000000000000000000000000000000000..a7ce8740d1889370678365359cf655daefc75bf2 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py @@ -0,0 +1,488 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np + +import paddle.fluid as fluid +import paddle.fluid.layers as layers +from paddle.fluid.dygraph import Embedding, LayerNorm, Linear, Layer +from paddle.fluid.dygraph.jit import dygraph_to_static_func + + +def position_encoding_init(n_position, d_pos_vec): + """ + Generate the initial values for the sinusoid position encoding table. + """ + channels = d_pos_vec + position = np.arange(n_position) + num_timescales = channels // 2 + log_timescale_increment = (np.log(float(1e4) / float(1)) / + (num_timescales - 1)) + inv_timescales = np.exp(np.arange( + num_timescales)) * -log_timescale_increment + scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales, + 0) + signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1) + signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant') + position_enc = signal + return position_enc.astype("float32") + + +class PrePostProcessLayer(Layer): + def __init__(self, process_cmd, d_model, dropout_rate): + super(PrePostProcessLayer, self).__init__() + self.process_cmd = process_cmd + self.functors = [] + for cmd in self.process_cmd: + if cmd == "a": # add residual connection + self.functors.append(lambda x, y: x + y if y else x) + elif cmd == "n": # add layer normalization + self.functors.append( + self.add_sublayer( + "layer_norm_%d" % len( + self.sublayers(include_sublayers=False)), + LayerNorm( + normalized_shape=d_model, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(0.))))) + elif cmd == "d": # add dropout + if dropout_rate: + self.functors.append(lambda x: layers.dropout( + x, dropout_prob=dropout_rate, is_test=False)) + + @dygraph_to_static_func + def forward(self, x, residual=None): + for i, cmd in enumerate(self.process_cmd): + if cmd == "a": + x = self.functors[i](x, residual) + else: + x = self.functors[i](x) + return x + + +class MultiHeadAttention(Layer): + def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.): + super(MultiHeadAttention, self).__init__() + self.n_head = n_head + self.d_key = d_key + self.d_value = d_value + self.d_model = d_model + self.dropout_rate = dropout_rate + self.q_fc = Linear( + input_dim=d_model, output_dim=d_key * n_head, bias_attr=False) + self.k_fc = Linear( + input_dim=d_model, output_dim=d_key * n_head, bias_attr=False) + self.v_fc = Linear( + input_dim=d_model, output_dim=d_value * n_head, bias_attr=False) + self.proj_fc = Linear( + input_dim=d_value * n_head, output_dim=d_model, bias_attr=False) + + @dygraph_to_static_func + def forward(self, queries, keys, values, attn_bias, cache=None): + # compute q ,k ,v + keys = queries if keys is None else keys + values = keys if values is None else values + q = self.q_fc(queries) + k = self.k_fc(keys) + v = self.v_fc(values) + # split head + q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key]) + q = layers.transpose(x=q, perm=[0, 2, 1, 3]) + k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) + k = layers.transpose(x=k, perm=[0, 2, 1, 3]) + v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) + v = layers.transpose(x=v, perm=[0, 2, 1, 3]) + + if cache is not None: + cache_k, cache_v = cache["k"], cache["v"] + k = layers.concat([cache_k, k], axis=2) + v = layers.concat([cache_v, v], axis=2) + cache["k"], cache["v"] = k, v + # scale dot product attention + product = layers.matmul( + x=q, y=k, transpose_y=True, alpha=self.d_model**-0.5) + if attn_bias: + product += attn_bias + weights = layers.softmax(product) + if self.dropout_rate: + weights = layers.dropout( + weights, dropout_prob=self.dropout_rate, is_test=False) + out = layers.matmul(weights, v) + out = layers.transpose(out, perm=[0, 2, 1, 3]) + out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) + out = self.proj_fc(out) + return out + + +class FFN(Layer): + def __init__(self, d_inner_hid, d_model, dropout_rate): + super(FFN, self).__init__() + self.dropout_rate = dropout_rate + self.fc1 = Linear(input_dim=d_model, output_dim=d_inner_hid, act="relu") + self.fc2 = Linear(input_dim=d_inner_hid, output_dim=d_model) + + @dygraph_to_static_func + def forward(self, x): + hidden = self.fc1(x) + if self.dropout_rate: + hidden = layers.dropout( + hidden, dropout_prob=self.dropout_rate, is_test=False) + out = self.fc2(hidden) + return out + + +class EncoderLayer(Layer): + def __init__(self, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd="n", + postprocess_cmd="da"): + + super(EncoderLayer, self).__init__() + + self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.ffn = FFN(d_inner_hid, d_model, relu_dropout) + self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + @dygraph_to_static_func + def forward(self, enc_input, attn_bias): + attn_output = self.self_attn( + self.preprocesser1(enc_input), None, None, attn_bias) + attn_output = self.postprocesser1(attn_output, enc_input) + ffn_output = self.ffn(self.preprocesser2(attn_output)) + ffn_output = self.postprocesser2(ffn_output, attn_output) + return ffn_output + + +class Encoder(Layer): + def __init__(self, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd="n", + postprocess_cmd="da"): + + super(Encoder, self).__init__() + + self.encoder_layers = list() + for i in range(n_layer): + self.encoder_layers.append( + self.add_sublayer( + "layer_%d" % i, + EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, + postprocess_cmd))) + self.processer = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + + @dygraph_to_static_func + def forward(self, enc_input, attn_bias): + for encoder_layer in self.encoder_layers: + enc_output = encoder_layer(enc_input, attn_bias) + enc_input = enc_output + + return self.processer(enc_output) + + +class Embedder(Layer): + def __init__(self, vocab_size, emb_dim, bos_idx=0): + super(Embedder, self).__init__() + self.word_embedder = Embedding( + size=[vocab_size, emb_dim], + padding_idx=bos_idx, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Normal(0., emb_dim**-0.5))) + + @dygraph_to_static_func + def forward(self, word): + word_emb = self.word_embedder(word) + return word_emb + + +class WrapEncoder(Layer): + def __init__(self, src_vocab_size, max_length, n_layer, n_head, d_key, + d_value, d_model, d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, + postprocess_cmd, word_embedder): + super(WrapEncoder, self).__init__() + self.emb_dropout = prepostprocess_dropout + self.emb_dim = d_model + self.word_embedder = word_embedder + self.pos_encoder = Embedding( + size=[max_length, self.emb_dim], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + position_encoding_init(max_length, self.emb_dim)), + trainable=False)) + self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model, + d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, + postprocess_cmd) + + @dygraph_to_static_func + def forward(self, src_word, src_pos, src_slf_attn_bias): + word_emb = self.word_embedder(src_word) + word_emb = layers.scale(x=word_emb, scale=self.emb_dim**0.5) + pos_enc = self.pos_encoder(src_pos) + pos_enc.stop_gradient = True + emb = word_emb + pos_enc + enc_input = layers.dropout( + emb, dropout_prob=self.emb_dropout, + is_test=False) if self.emb_dropout else emb + enc_output = self.encoder(enc_input, src_slf_attn_bias) + return enc_output + + +class DecoderLayer(Layer): + def __init__(self, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd="n", + postprocess_cmd="da"): + super(DecoderLayer, self).__init__() + + self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.cross_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + self.preprocesser3 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.ffn = FFN(d_inner_hid, d_model, relu_dropout) + self.postprocesser3 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + @dygraph_to_static_func + def forward(self, + dec_input, + enc_output, + self_attn_bias, + cross_attn_bias, + cache=None): + self_attn_output = self.self_attn( + self.preprocesser1(dec_input), None, None, self_attn_bias, cache) + self_attn_output = self.postprocesser1(self_attn_output, dec_input) + cross_attn_output = self.cross_attn( + self.preprocesser2(self_attn_output), enc_output, enc_output, + cross_attn_bias) + cross_attn_output = self.postprocesser2(cross_attn_output, + self_attn_output) + ffn_output = self.ffn(self.preprocesser3(cross_attn_output)) + ffn_output = self.postprocesser3(ffn_output, cross_attn_output) + return ffn_output + + +class Decoder(Layer): + def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, relu_dropout, + preprocess_cmd, postprocess_cmd): + super(Decoder, self).__init__() + + self.decoder_layers = list() + for i in range(n_layer): + self.decoder_layers.append( + self.add_sublayer( + "layer_%d" % i, + DecoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, + postprocess_cmd))) + self.processer = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + + @dygraph_to_static_func + def forward(self, + dec_input, + enc_output, + self_attn_bias, + cross_attn_bias, + caches=None): + for i, decoder_layer in enumerate(self.decoder_layers): + dec_output = decoder_layer(dec_input, enc_output, self_attn_bias, + cross_attn_bias, None + if caches is None else caches[i]) + dec_input = dec_output + return self.processer(dec_output) + + +class WrapDecoder(Layer): + def __init__(self, trg_vocab_size, max_length, n_layer, n_head, d_key, + d_value, d_model, d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, + postprocess_cmd, share_input_output_embed, word_embedder): + super(WrapDecoder, self).__init__() + + self.emb_dropout = prepostprocess_dropout + self.emb_dim = d_model + self.word_embedder = word_embedder + self.pos_encoder = Embedding( + size=[max_length, self.emb_dim], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + position_encoding_init(max_length, self.emb_dim)), + trainable=False)) + self.decoder = Decoder(n_layer, n_head, d_key, d_value, d_model, + d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, + postprocess_cmd) + if share_input_output_embed: + self.linear = lambda x: layers.matmul(x=x, + y=self.word_embedder. + word_embedder.weight, + transpose_y=True) + else: + self.linear = Linear( + input_dim=d_model, output_dim=trg_vocab_size, bias_attr=False) + + @dygraph_to_static_func + def forward(self, + trg_word, + trg_pos, + trg_slf_attn_bias, + trg_src_attn_bias, + enc_output, + caches=None): + word_emb = self.word_embedder(trg_word) + word_emb = layers.scale(x=word_emb, scale=self.emb_dim**0.5) + pos_enc = self.pos_encoder(trg_pos) + pos_enc.stop_gradient = True + emb = word_emb + pos_enc + dec_input = layers.dropout( + emb, dropout_prob=self.emb_dropout, + is_test=False) if self.emb_dropout else emb + dec_output = self.decoder(dec_input, enc_output, trg_slf_attn_bias, + trg_src_attn_bias, caches) + dec_output = layers.reshape( + dec_output, + shape=[-1, dec_output.shape[-1]], ) + logits = self.linear(dec_output) + return logits + + +class CrossEntropyCriterion(object): + def __init__(self, label_smooth_eps): + self.label_smooth_eps = label_smooth_eps + + @dygraph_to_static_func + def __call__(self, predict, label, weights): + if self.label_smooth_eps: + label_out = layers.label_smooth( + label=layers.one_hot( + input=label, depth=predict.shape[-1]), + epsilon=self.label_smooth_eps) + + cost = layers.softmax_with_cross_entropy( + logits=predict, + label=label_out, + soft_label=True if self.label_smooth_eps else False) + weighted_cost = cost * weights + sum_cost = layers.reduce_sum(weighted_cost) + token_num = layers.reduce_sum(weights) + token_num.stop_gradient = True + avg_cost = sum_cost / token_num + return sum_cost, avg_cost, token_num + + +class Transformer(Layer): + def __init__(self, + src_vocab_size, + trg_vocab_size, + max_length, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + weight_sharing, + bos_id=0, + eos_id=1): + super(Transformer, self).__init__() + src_word_embedder = Embedder( + vocab_size=src_vocab_size, emb_dim=d_model, bos_idx=bos_id) + self.encoder = WrapEncoder( + src_vocab_size, max_length, n_layer, n_head, d_key, d_value, + d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, postprocess_cmd, src_word_embedder) + if weight_sharing: + assert src_vocab_size == trg_vocab_size, ( + "Vocabularies in source and target should be same for weight sharing." + ) + trg_word_embedder = src_word_embedder + else: + trg_word_embedder = Embedder( + vocab_size=trg_vocab_size, emb_dim=d_model, bos_idx=bos_id) + self.decoder = WrapDecoder( + trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, + d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, + trg_word_embedder) + + self.trg_vocab_size = trg_vocab_size + self.n_layer = n_layer + self.n_head = n_head + self.d_key = d_key + self.d_value = d_value + + @dygraph_to_static_func + def forward(self, src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, + trg_slf_attn_bias, trg_src_attn_bias): + enc_output = self.encoder(src_word, src_pos, src_slf_attn_bias) + predict = self.decoder(trg_word, trg_pos, trg_slf_attn_bias, + trg_src_attn_bias, enc_output) + return predict diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py new file mode 100644 index 0000000000000000000000000000000000000000..d2e00d85c73e2f58fe52ab61d14f5030f3d53c28 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_util.py @@ -0,0 +1,276 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import pickle +import warnings +import six +from functools import partial +import numpy as np + +import paddle +import paddle.fluid as fluid +import paddle.dataset.wmt16 as wmt16 + + +def get_input_descs(args): + + batch_size = args.batch_size # TODO None(before) + seq_len = None + n_head = getattr(args, "n_head", 8) + d_model = getattr(args, "d_model", 512) + input_descs = { + "src_word": [(batch_size, seq_len), "int64", 2], + "src_pos": [(batch_size, seq_len), "int64"], + "src_slf_attn_bias": + [(batch_size, n_head, seq_len, seq_len), "float32"], + "trg_word": [(batch_size, seq_len), "int64", 2], + "trg_pos": [(batch_size, seq_len), "int64"], + "trg_slf_attn_bias": + [(batch_size, n_head, seq_len, seq_len), "float32"], + "trg_src_attn_bias": [(batch_size, n_head, seq_len, seq_len), "float32" + ], # TODO: 1 for predict, seq_len for train + "enc_output": [(batch_size, seq_len, d_model), "float32"], + "lbl_word": [(None, 1), "int64"], + "lbl_weight": [(None, 1), "float32"], + "init_score": [(batch_size, 1), "float32", 2], + "init_idx": [(batch_size, ), "int32"], + } + return input_descs + + +encoder_data_input_fields = ( + "src_word", + "src_pos", + "src_slf_attn_bias", ) +decoder_data_input_fields = ( + "trg_word", + "trg_pos", + "trg_slf_attn_bias", + "trg_src_attn_bias", + "enc_output", ) +label_data_input_fields = ( + "lbl_word", + "lbl_weight", ) +fast_decoder_data_input_fields = ( + "trg_word", + "trg_src_attn_bias", ) + + +class ModelHyperParams(object): + print_step = 2 + init_from_params = "trained_models/step_10/" + save_model = "trained_models" + inference_model_dir = "infer_model" + output_file = "predict.txt" + batch_size = 5 + epoch = 1 + learning_rate = 2.0 + beta1 = 0.9 + beta2 = 0.997 + eps = 1e-9 + warmup_steps = 8000 + label_smooth_eps = 0.1 + beam_size = 5 + max_out_len = 256 + n_best = 1 + src_vocab_size = 10000 + trg_vocab_size = 10000 + bos_idx = 0 # index for token + eos_idx = 1 # index for token + unk_idx = 2 # index for token + max_length = 256 + d_model = 512 + d_inner_hid = 2048 + d_key = 64 + d_value = 64 + n_head = 8 + n_layer = 6 + prepostprocess_dropout = 0.1 + attention_dropout = 0.1 + relu_dropout = 0.1 + preprocess_cmd = "n" # layer normalization + postprocess_cmd = "da" # dropout + residual connection + weight_sharing = True + + +def pad_batch_data(insts, + pad_idx, + n_head, + is_target=False, + is_label=False, + return_attn_bias=True, + return_max_len=True, + return_num_token=False): + return_list = [] + max_len = max(len(inst) for inst in insts) + inst_data = np.array( + [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) + return_list += [inst_data.astype("int64").reshape([-1, 1])] + if is_label: # label weight + inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst)) + for inst in insts]) + return_list += [inst_weight.astype("float32").reshape([-1, 1])] + else: # position data + inst_pos = np.array([ + list(range(0, len(inst))) + [0] * (max_len - len(inst)) + for inst in insts + ]) + return_list += [inst_pos.astype("int64").reshape([-1, 1])] + if return_attn_bias: + if is_target: + slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len)) + slf_attn_bias_data = np.triu(slf_attn_bias_data, + 1).reshape([-1, 1, max_len, max_len]) + slf_attn_bias_data = np.tile(slf_attn_bias_data, + [1, n_head, 1, 1]) * [-1e9] + else: + slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * + (max_len - len(inst)) + for inst in insts]) + slf_attn_bias_data = np.tile( + slf_attn_bias_data.reshape([-1, 1, 1, max_len]), + [1, n_head, max_len, 1]) + return_list += [slf_attn_bias_data.astype("float32")] + if return_max_len: + return_list += [max_len] + if return_num_token: + num_token = 0 + for inst in insts: + num_token += len(inst) + return_list += [num_token] + return return_list if len(return_list) > 1 else return_list[0] + + +def prepare_train_input(insts, src_pad_idx, trg_pad_idx, n_head): + src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( + [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) + src_word = src_word.reshape(-1, src_max_len) + src_pos = src_pos.reshape(-1, src_max_len) + trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data( + [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True) + trg_word = trg_word.reshape(-1, trg_max_len) + trg_pos = trg_pos.reshape(-1, trg_max_len) + + trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], + [1, 1, trg_max_len, 1]).astype("float32") + + lbl_word, lbl_weight, num_token = pad_batch_data( + [inst[2] for inst in insts], + trg_pad_idx, + n_head, + is_target=False, + is_label=True, + return_attn_bias=False, + return_max_len=False, + return_num_token=True) + lbl_word = lbl_word.reshape(-1, 1) + lbl_weight = lbl_weight.reshape(-1, 1) + + data_inputs = [ + src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, + trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight + ] + + return data_inputs + + +def prepare_infer_input(insts, src_pad_idx, bos_idx, n_head): + src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( + [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) + # start tokens + trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64") + trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], + [1, 1, 1, 1]).astype("float32") + trg_word = trg_word.reshape(-1, 1) + src_word = src_word.reshape(-1, src_max_len) + src_pos = src_pos.reshape(-1, src_max_len) + + data_inputs = [ + src_word, src_pos, src_slf_attn_bias, trg_word, trg_src_attn_bias + ] + return data_inputs + + +def get_feed_data_reader(args, mode='train'): + def __for_train__(): + train_reader = paddle.batch( + wmt16.train(args.src_vocab_size, args.trg_vocab_size), + batch_size=args.batch_size) + for batch in train_reader(): + tensors = prepare_train_input(batch, args.eos_idx, args.eos_idx, + args.n_head) + yield tensors + + def __for_test__(): + test_reader = paddle.batch( + wmt16.train(args.src_vocab_size, args.trg_vocab_size), + batch_size=args.batch_size) + for batch in test_reader(): + tensors = prepare_infer_input(batch, args.eos_idx, args.eos_idx, + args.n_head) + yield tensors + + return __for_train__ if mode == 'train' else __for_test__ + + +class InputField(object): + def __init__(self, input_slots): + self.feed_list = [] + for slot in input_slots: + self.feed_list.append( + fluid.layers.data( + name=slot['name'], + shape=slot['shape'], + dtype=slot['dtype'], + lod_level=slot.get('lod_level', 0), + append_batch_size=False)) + + +def load(program, model_path, executor=None, var_list=None): + """ + To load python2 saved models in python3. + """ + try: + fluid.load(program, model_path, executor, var_list) + except UnicodeDecodeError: + warnings.warn( + "An UnicodeDecodeError is catched, which might be caused by loading " + "a python2 saved model. Encoding of pickle.load would be set and " + "load again automatically.") + if six.PY3: + load_bak = pickle.load + pickle.load = partial(load_bak, encoding="latin1") + fluid.load(program, model_path, executor, var_list) + pickle.load = load_bak + + +def load_dygraph(model_path, keep_name_table=False): + """ + To load python2 saved models in python3. + """ + try: + para_dict, opti_dict = fluid.load_dygraph(model_path, keep_name_table) + return para_dict, opti_dict + except UnicodeDecodeError: + warnings.warn( + "An UnicodeDecodeError is catched, which might be caused by loading " + "a python2 saved model. Encoding of pickle.load would be set and " + "load again automatically.") + if six.PY3: + load_bak = pickle.load + pickle.load = partial(load_bak, encoding="latin1") + para_dict, opti_dict = fluid.load_dygraph(model_path, + keep_name_table) + pickle.load = load_bak + return para_dict, opti_dict