batch_norm_op.cu.cc 11.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/framework/data_layout.h"
Q
Qiao Longfei 已提交
17 18

#include <cfloat>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
27
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
28 29
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
30
template <typename T>
K
Kexin Zhao 已提交
31
using ScalingParamType = typename CudnnDataType<T>::ScalingParamType;
Q
Qiao Longfei 已提交
32

Q
QI JUN 已提交
33 34
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
                  int *N, int *C, int *H, int *W, int *D) {
Q
Qiao Longfei 已提交
35
  *N = dims[0];
36 37 38 39 40 41
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
Q
QI JUN 已提交
42 43
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
44
    *W = dims.size() > 3
Q
QI JUN 已提交
45
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
46 47
             : 1;
    *D = dims.size() > 4
Q
QI JUN 已提交
48
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
49 50
             : 1;
  }
Q
Qiao Longfei 已提交
51 52 53
}

template <typename T>
Q
QI JUN 已提交
54 55
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
56 57 58
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
59
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
60 61 62
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
63 64 65
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
66 67 68 69 70

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
71 72
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
73
    int N, C, H, W, D;
Q
QI JUN 已提交
74
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    VLOG(1) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
100
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
101 102 103 104 105 106 107 108 109
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
110
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
111
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
112
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
113 114 115 116 117 118 119 120 121 122 123 124

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
K
Kexin Zhao 已提交
125 126 127 128
    mean_out->mutable_data<ScalingParamType<T>>(ctx.GetPlace());
    variance_out->mutable_data<ScalingParamType<T>>(ctx.GetPlace());
    saved_mean->mutable_data<ScalingParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<ScalingParamType<T>>(ctx.GetPlace());
Q
Qiao Longfei 已提交
129

Q
QI JUN 已提交
130
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
K
Kexin Zhao 已提交
131 132 133
    math::SetConstant<platform::CUDADeviceContext, ScalingParamType<T>> functor;
    functor(dev_ctx, saved_mean, static_cast<ScalingParamType<T>>(0));
    functor(dev_ctx, saved_variance, static_cast<ScalingParamType<T>>(0));
Q
Qiao Longfei 已提交
134

Q
QI JUN 已提交
135
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
Kexin Zhao 已提交
154 155 156 157
          bn_param_desc_, scale->template data<ScalingParamType<T>>(),
          bias->template data<ScalingParamType<T>>(),
          est_mean->template data<ScalingParamType<T>>(),
          est_var->template data<ScalingParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
      double this_factor = 1. - momentum;

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
          handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
          data_desc_, x->template data<T>(), data_desc_,
          y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
K
Kexin Zhao 已提交
168 169 170 171 172 173 174 175
          scale->template data<ScalingParamType<T>>(),
          bias->template data<ScalingParamType<T>>(), this_factor,
          mean_out->template mutable_data<ScalingParamType<T>>(ctx.GetPlace()),
          variance_out->template mutable_data<ScalingParamType<T>>(
              ctx.GetPlace()),
          epsilon, saved_mean->template mutable_data<ScalingParamType<T>>(
                       ctx.GetPlace()),
          saved_variance->template mutable_data<ScalingParamType<T>>(
K
Kexin Zhao 已提交
176
              ctx.GetPlace())));
Q
Qiao Longfei 已提交
177 178 179 180 181 182 183 184 185 186
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
Q
QI JUN 已提交
187
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
188 189 190 191
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
192
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
193
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
194 195 196
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
197 198 199 200 201 202
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

203 204
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
205
    int N, C, H, W, D;
Q
QI JUN 已提交
206
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

Z
zchen0211 已提交
231 232
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
233
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
234 235 236 237 238 239
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

Q
QI JUN 已提交
260
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
261
    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
Q
QI JUN 已提交
262 263 264 265
        dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
        data_desc_, d_y->template data<T>(), data_desc_,
Q
Qiao Longfei 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
283
namespace plat = paddle::platform;
Q
QI JUN 已提交
284
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
285 286
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
287
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
288
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>);