Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c975fe1b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c975fe1b
编写于
11月 28, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
11月 28, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
batch norm support matrix input (#5980)
* batch norm support matrix input * update gpu code * format code
上级
23b3fef0
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
93 addition
and
44 deletion
+93
-44
paddle/operators/batch_norm_op.cc
paddle/operators/batch_norm_op.cc
+8
-7
paddle/operators/batch_norm_op.cu.cc
paddle/operators/batch_norm_op.cu.cc
+19
-12
python/paddle/v2/fluid/tests/book/test_image_classification_train.py
...le/v2/fluid/tests/book/test_image_classification_train.py
+1
-2
python/paddle/v2/fluid/tests/test_batch_norm_op.py
python/paddle/v2/fluid/tests/test_batch_norm_op.py
+47
-13
python/paddle/v2/fluid/tests/test_image_classification_layer.py
.../paddle/v2/fluid/tests/test_image_classification_layer.py
+18
-10
未找到文件。
paddle/operators/batch_norm_op.cc
浏览文件 @
c975fe1b
...
...
@@ -62,13 +62,14 @@ class BatchNormOp : public framework::OperatorWithKernel {
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"tensor_format"
));
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"Input X must have 2 to 5 dimensions."
);
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"Input X must have 3 to 5 dimensions."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
...
...
@@ -146,8 +147,8 @@ class BatchNormKernel<platform::CPUPlace, T> : public framework::OpKernel<T> {
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
3
and 5"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
2
and 5"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
...
...
@@ -339,8 +340,8 @@ class BatchNormGradKernel<platform::CPUPlace, T>
// Get the size for each dimension.
// NCHW [batch_size, in_channels, in_height, in_width]
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
3
and 5"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
2
and 5"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
...
...
paddle/operators/batch_norm_op.cu.cc
浏览文件 @
c975fe1b
...
...
@@ -29,14 +29,21 @@ void ExtractNCWHD(const framework::DDim &dims,
const
TensorFormat
&
tensor_format
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
*
C
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
*
H
=
1
;
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
template
<
typename
T
>
...
...
@@ -56,8 +63,8 @@ class BatchNormKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
// NCHW [batch_size, in_channels, in_height, in_width]
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
3
and 5"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
2
and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
tensor_format
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
...
...
@@ -180,8 +187,8 @@ class BatchNormGradKernel<platform::GPUPlace, T>
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
3
and 5"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between
2
and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
tensor_format
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
...
...
python/paddle/v2/fluid/tests/book/test_image_classification_train.py
浏览文件 @
c975fe1b
...
...
@@ -69,8 +69,7 @@ def vgg16_bn_drop(input):
drop
=
fluid
.
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
)
fc1
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
512
,
act
=
None
)
reshape1
=
fluid
.
layers
.
reshape
(
x
=
fc1
,
shape
=
list
(
fc1
.
shape
+
(
1
,
1
)))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
reshape1
,
act
=
'relu'
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
fc1
,
act
=
'relu'
)
drop2
=
fluid
.
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
)
fc2
=
fluid
.
layers
.
fc
(
input
=
drop2
,
size
=
512
,
act
=
None
)
return
fc2
...
...
python/paddle/v2/fluid/tests/test_batch_norm_op.py
浏览文件 @
c975fe1b
...
...
@@ -21,6 +21,13 @@ def get_backward_op(scope, op, no_grad_set):
def
_reference_training
(
x
,
scale
,
offset
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
if
data_format
==
"NCHW"
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
else
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
1
,
1
,
x
.
shape
[
1
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
x_square
=
x
*
x
...
...
@@ -39,6 +46,8 @@ def _reference_training(x, scale, offset, epsilon, data_format):
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
if
len
(
x_shape
)
==
2
:
y
=
np
.
reshape
(
y
,
(
y
.
shape
[
0
],
y
.
shape
[
1
]))
return
y
,
mean
,
var
elif
data_format
==
"NHWC"
:
x_square
=
x
*
x
...
...
@@ -48,7 +57,10 @@ def _reference_training(x, scale, offset, epsilon, data_format):
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
return
(
normalized
*
scale
+
offset
),
mean
,
var
y
=
normalized
*
scale
+
offset
if
len
(
x_shape
)
==
2
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
,
mean
,
var
else
:
raise
ValueError
(
"Unknown data order."
)
...
...
@@ -65,6 +77,18 @@ def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format):
# (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon))
# transfer from (N, C, H, W) to (N, H, W, C) to simplify computation
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
if
data_format
==
"NCHW"
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
grad_y
=
np
.
reshape
(
grad_y
,
(
grad_y
.
shape
[
0
],
grad_y
.
shape
[
1
],
1
,
1
))
else
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
1
,
1
,
x
.
shape
[
1
]))
grad_y
=
np
.
reshape
(
grad_y
,
(
grad_y
.
shape
[
0
],
1
,
1
,
grad_y
.
shape
[
1
]))
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
grad_y
=
np
.
transpose
(
grad_y
,
(
0
,
2
,
3
,
1
))
...
...
@@ -83,6 +107,9 @@ def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format):
grad_x
=
np
.
transpose
(
grad_x
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
grad_y
=
np
.
transpose
(
grad_y
,
(
0
,
3
,
1
,
2
))
if
len
(
x_shape
)
==
2
:
grad_x
=
np
.
reshape
(
grad_x
,
x_shape
)
return
grad_x
,
grad_scale
,
grad_offset
...
...
@@ -127,7 +154,7 @@ class TestBatchNormOp(OpTest):
momentum
=
0.9
# N, H, W, C: 2, 3, 4, 2
n
,
h
,
w
,
c
=
2
,
3
,
4
,
2
n
,
h
,
w
,
c
=
2
,
3
,
4
,
5
x_shape
=
[
n
,
h
,
w
,
c
]
scale_shape
=
[
c
]
...
...
@@ -184,20 +211,23 @@ class TestBatchNormOp(OpTest):
print
'python: NHWC, NCHW, backward checking passed'
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
tensor_format
):
def
test_with_place
(
place
,
tensor_format
,
shape
):
# attr
epsilon
=
0.00001
momentum
=
0.9
# N, H, W, C: 12, 3, 4, 2
n
,
h
,
w
,
c
=
2
,
3
,
4
,
2
if
data_format
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_format
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
if
len
(
shape
)
==
2
:
x_shape
=
shape
c
=
shape
[
1
]
else
:
raise
ValueError
(
"Unknown data type."
)
# n, h, w, c = 2, 3, 4, 2
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
if
data_format
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_format
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data type."
)
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
...
...
@@ -219,7 +249,10 @@ class TestBatchNormOp(OpTest):
# for gradient test
# y_grad = np.ones(x_shape).astype(np.float32)
y_grad
=
np
.
zeros
(
x_shape
).
astype
(
np
.
float32
)
y_grad
[
0
,
0
,
0
,
0
]
=
1.
if
len
(
y_grad
.
shape
)
==
2
:
y_grad
[
0
,
0
]
=
1.
else
:
y_grad
[
0
,
0
,
0
,
0
]
=
1.
# y_grad = np.random.random_sample(x_shape).astype(np.float32)
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_grad
(
x_val
,
y_grad
,
scale_val
,
saved_mean
,
var_ref
,
epsilon
,
...
...
@@ -313,7 +346,8 @@ class TestBatchNormOp(OpTest):
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
test_with_place
(
place
,
data_format
)
test_with_place
(
place
,
data_format
,
[
2
,
3
,
4
,
5
])
test_with_place
(
place
,
data_format
,
[
2
,
3
])
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/fluid/tests/test_image_classification_layer.py
浏览文件 @
c975fe1b
import
unittest
import
paddle.v2.fluid
.layers
as
layers
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.nets
as
nets
from
paddle.v2.fluid.framework
import
Program
...
...
@@ -29,27 +29,35 @@ class TestLayer(unittest.TestCase):
def
test_batch_norm_layer
(
self
):
main_program
=
Program
()
startup_program
=
Program
()
images
=
layers
.
data
(
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
,
main_program
=
main_program
)
layers
.
batch_norm
(
hidden1
=
fluid
.
layers
.
batch_norm
(
input
=
images
,
main_program
=
main_program
,
startup_program
=
startup_program
)
hidden2
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
128
,
act
=
'relu'
,
main_program
=
main_program
)
hidden3
=
fluid
.
layers
.
batch_norm
(
input
=
hidden2
,
main_program
=
main_program
,
startup_program
=
startup_program
)
#
print str(main_program)
print
str
(
main_program
)
def
test_dropout_layer
(
self
):
main_program
=
Program
()
startup_program
=
Program
()
images
=
layers
.
data
(
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
,
main_program
=
main_program
)
layers
.
dropout
(
fluid
.
layers
.
dropout
(
x
=
images
,
dropout_prob
=
0.5
,
main_program
=
main_program
,
...
...
@@ -61,7 +69,7 @@ class TestLayer(unittest.TestCase):
main_program
=
Program
()
startup_program
=
Program
()
images
=
layers
.
data
(
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
,
...
...
@@ -77,19 +85,19 @@ class TestLayer(unittest.TestCase):
def
test_elementwise_add_with_act
(
self
):
main_program
=
Program
()
startup_program
=
Program
()
image1
=
layers
.
data
(
image1
=
fluid
.
layers
.
data
(
name
=
'pixel1'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
,
main_program
=
main_program
,
startup_program
=
startup_program
)
image2
=
layers
.
data
(
image2
=
fluid
.
layers
.
data
(
name
=
'pixel2'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
,
main_program
=
main_program
,
startup_program
=
startup_program
)
out
=
layers
.
elementwise_add
(
out
=
fluid
.
layers
.
elementwise_add
(
x
=
image1
,
y
=
image2
,
act
=
'relu'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录