localsgd_optimizer.py 19.2 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
ShenLiang 已提交
15
import paddle
16
from paddle.fluid import program_guard, layers, default_main_program
J
Jiangxinz 已提交
17
from paddle.fluid import default_startup_program
Y
Yi Liu 已提交
18
from .meta_optimizer_base import MetaOptimizerBase
19
from .common import CollectiveHelper, OP_ROLE_KEY, OpRole
Y
Yi Liu 已提交
20

21 22
__all__ = []

Y
Yi Liu 已提交
23 24

class LocalSGDOptimizer(MetaOptimizerBase):
25

Y
Yi Liu 已提交
26 27 28
    def __init__(self, optimizer):
        super(LocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
29
        self.meta_optimizers_white_list = ['AMPOptimizer']
30
        self.meta_optimizers_black_list = [
31 32
            "GraphExecutionOptimizer",
            "AdaptiveLocalSGDOptimizer",
33
        ]
Y
Yi Liu 已提交
34 35 36
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
37 38 39
        if not self.role_maker._is_collective:
            return False

Y
Yi Liu 已提交
40 41 42
        if not self.user_defined_strategy.localsgd:
            return False

43
        if self.role_maker._worker_num() <= 1:
Y
Yi Liu 已提交
44 45
            return False

S
ShenLiang 已提交
46
        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
47 48 49
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)
Y
Yi Liu 已提交
50 51 52

    def _disable_strategy(self, dist_strategy):
        dist_strategy.localsgd = False
53
        dist_strategy.localsgd_configs = {}
Y
Yi Liu 已提交
54

55
    def _enable_strategy(self, dist_strategy, context):
56
        dist_strategy.localsgd = True
57
        dist_strategy.localsgd_configs = {"k_steps": 1, "begin_step": 1}
58

Y
Yi Liu 已提交
59 60 61
    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

62 63 64 65 66 67 68 69 70 71
    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
72 73 74 75 76
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True,
                                        dtype=param.dtype)
77 78 79 80 81 82 83 84
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

Y
Yi Liu 已提交
85 86 87 88 89
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
90 91
        minimized = self.inner_opt.minimize(loss,
                                            startup_program=startup_program)
Y
Yi Liu 已提交
92

93 94 95
        k_steps_value = self.user_defined_strategy.localsgd_configs['k_steps']
        begin_step_value = self.user_defined_strategy.localsgd_configs[
            'begin_step']
Y
Yi Liu 已提交
96 97 98 99 100 101 102 103

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
104 105
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)
Y
Yi Liu 已提交
106

107 108
        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
109
            step = layers.autoincreased_step_counter(begin=1)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            k_steps = layers.create_global_var(name="k_steps",
                                               shape=[1],
                                               value=k_steps_value,
                                               dtype='int64',
                                               persistable=True)

            begin_step = layers.create_global_var(name="begin_step",
                                                  shape=[1],
                                                  value=begin_step_value,
                                                  dtype='int64',
                                                  persistable=True)

            last_step = layers.create_global_var(name="last_step",
                                                 shape=[1],
                                                 value=begin_step_value,
                                                 dtype='int64',
                                                 persistable=True)
Y
Yi Liu 已提交
127 128

            def communicate():
129
                sub_block = default_main_program().current_block()
Y
Yi Liu 已提交
130
                ring_id = -1
131
                for param, snapshot in p2s:
132 133 134 135 136 137 138 139 140 141 142
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='c_sync_calc_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
143
                    ring_id = (ring_id + 1) % self.nrings
144 145 146 147 148 149 150
                    sub_block.append_op(type='c_allreduce_sum',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
Y
Yi Liu 已提交
151 152

                for ring_id in range(self.nrings):
153 154 155 156 157 158 159
                    sub_block.append_op(type='c_sync_comm_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
Y
Yi Liu 已提交
160

161
                for param, snapshot in p2s:
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
                    sub_block.append_op(type='scale',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'scale':
                                            1.0 / self.role_maker._worker_num(),
                                            OP_ROLE_KEY:
                                            OpRole.Optimize
                                        })
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='assign',
                                        inputs={'X': [param]},
                                        outputs={'Out': [snapshot]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
Y
Yi Liu 已提交
182 183
                layers.assign(step, last_step)

184 185
            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate)
Y
Yi Liu 已提交
186

187
            layers.cond(step > begin_step, begin_localsgd, communicate)
Y
Yi Liu 已提交
188
        return minimized
189 190 191


class AdaptiveLocalSGDOptimizer(MetaOptimizerBase):
192

193 194 195
    def __init__(self, optimizer):
        super(AdaptiveLocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
196
        self.meta_optimizers_white_list = ['AMPOptimizer']
197 198 199 200 201 202 203 204 205 206 207 208
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer", "LocalSGDOptimizer"
        ]
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if not self.user_defined_strategy.adaptive_localsgd:
            return False

209
        if self.role_maker._worker_num() <= 1:
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
            return False

        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)

    def _disable_strategy(self, dist_strategy):
        dist_strategy.adaptive_localsgd = False
        dist_strategy.adaptive_localsgd_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.adaptive_localsgd = True
        dist_strategy.adaptive_localsgd_configs = {
            "init_k_steps": 1,
            "begin_step": 1
        }

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
241 242 243 244 245
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True,
                                        dtype=param.dtype)
246 247 248 249 250 251 252 253 254
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

    def _generate_avg_loss(self, program_block, loss, avg_loss):
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        program_block.append_op(type='c_allreduce_sum',
                                inputs={'X': [loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={
                                    'ring_id': 0,
                                    OP_ROLE_KEY: OpRole.Optimize,
                                    'use_calc_stream': True
                                })
        program_block.append_op(type='c_sync_calc_stream',
                                inputs={'X': [avg_loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={OP_ROLE_KEY: OpRole.Optimize})

        program_block.append_op(type='scale',
                                inputs={'X': [avg_loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={
                                    'scale':
                                    1.0 / self.role_maker._worker_num(),
                                    OP_ROLE_KEY: OpRole.Optimize
                                })
276 277 278 279 280 281

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
282 283
        minimized = self.inner_opt.minimize(loss,
                                            startup_program=startup_program)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

        init_k_steps = self.user_defined_strategy.adaptive_localsgd_configs[
            'init_k_steps']
        begin_step_value = self.user_defined_strategy.adaptive_localsgd_configs[
            'begin_step']

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)

        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
            step = layers.autoincreased_step_counter(begin=1)

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            k_steps = layers.create_global_var(name="k_steps",
                                               shape=[1],
                                               value=int(init_k_steps),
                                               dtype='int64',
                                               persistable=True)

            begin_step = layers.create_global_var(name="begin_step",
                                                  shape=[1],
                                                  value=int(begin_step_value),
                                                  dtype='int64',
                                                  persistable=True)

            last_step = layers.create_global_var(name="last_step",
                                                 shape=[1],
                                                 value=int(0),
                                                 dtype='int64',
                                                 persistable=True)

            avg_loss = layers.create_global_var(name="avg_loss",
                                                shape=[1],
                                                value=float(0),
                                                dtype=loss.dtype,
                                                persistable=True)

            lr_0 = layers.create_global_var(name="lr_0",
                                            shape=[1],
                                            value=float(0),
                                            dtype='float32',
                                            persistable=True)

            loss_0 = layers.create_global_var(name="loss_0",
                                              shape=[1],
                                              value=float(0),
                                              dtype='float32',
                                              persistable=True)
339 340 341 342 343 344 345 346 347 348 349 350 351 352

            global_lr = self.inner_opt._global_learning_rate()

            def initialize():
                self._generate_avg_loss(main_block, loss, avg_loss)
                layers.assign(avg_loss, loss_0)
                layers.assign(global_lr, lr_0)

            layers.cond(step == 1, initialize)

            def communicate():
                sub_block = default_main_program().current_block()
                ring_id = -1
                for param, snapshot in p2s:
353 354 355 356 357 358 359 360 361 362 363
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='c_sync_calc_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
364
                    ring_id = (ring_id + 1) % self.nrings
365 366 367 368 369 370 371
                    sub_block.append_op(type='c_allreduce_sum',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
372 373

                for ring_id in range(self.nrings):
374 375 376 377 378 379 380
                    sub_block.append_op(type='c_sync_comm_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
381 382

                for param, snapshot in p2s:
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                    sub_block.append_op(type='scale',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'scale':
                                            1.0 / self.role_maker._worker_num(),
                                            OP_ROLE_KEY:
                                            OpRole.Optimize
                                        })
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='assign',
                                        inputs={'X': [param]},
                                        outputs={'Out': [snapshot]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
403 404 405 406 407
                layers.assign(step, last_step)

            def communicate_avg_loss():
                communicate()
                self._generate_avg_loss(main_block, loss, avg_loss)
408 409 410 411 412 413 414 415 416 417 418 419 420 421
                next_local_steps = layers.cast(layers.ceil(
                    layers.sqrt(lr_0 * avg_loss / (global_lr * loss_0) *
                                float(init_k_steps))),
                                               dtype='int64')
                max_local_steps = layers.fill_constant(shape=[1],
                                                       dtype='int64',
                                                       value=16)
                min_local_steps = layers.fill_constant(shape=[1],
                                                       dtype='int64',
                                                       value=1)
                next_local_steps = layers.elementwise_min(
                    next_local_steps, max_local_steps)
                next_local_steps = layers.elementwise_max(
                    next_local_steps, min_local_steps)
422 423 424 425 426 427 428 429
                layers.assign(next_local_steps, k_steps)

            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate_avg_loss)

            layers.cond(step > begin_step, begin_localsgd, communicate)

        return minimized