localsgd_optimizer.py 16.5 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

S
ShenLiang 已提交
17
import paddle
18
from paddle.fluid import program_guard, layers, default_main_program
Y
Yi Liu 已提交
19 20 21
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, CollectiveHelper, is_update_op

22 23
__all__ = []

Y
Yi Liu 已提交
24 25 26 27 28

class LocalSGDOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(LocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
29
        self.meta_optimizers_white_list = ['AMPOptimizer']
30
        self.meta_optimizers_black_list = [
31 32
            "GraphExecutionOptimizer",
            "AdaptiveLocalSGDOptimizer",
33
        ]
Y
Yi Liu 已提交
34 35 36
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
37 38 39
        if not self.role_maker._is_collective:
            return False

Y
Yi Liu 已提交
40 41 42
        if not self.user_defined_strategy.localsgd:
            return False

43
        if self.role_maker._worker_num() <= 1:
Y
Yi Liu 已提交
44 45
            return False

S
ShenLiang 已提交
46
        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
47 48 49
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)
Y
Yi Liu 已提交
50 51 52

    def _disable_strategy(self, dist_strategy):
        dist_strategy.localsgd = False
53
        dist_strategy.localsgd_configs = {}
Y
Yi Liu 已提交
54

55
    def _enable_strategy(self, dist_strategy, context):
56
        dist_strategy.localsgd = True
57
        dist_strategy.localsgd_configs = {"k_steps": 1, "begin_step": 1}
58

Y
Yi Liu 已提交
59 60 61
    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True,
                dtype=param.dtype)
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

Y
Yi Liu 已提交
86 87 88 89 90 91 92 93
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        minimized = self.inner_opt.minimize(
            loss, startup_program=startup_program)

94 95 96
        k_steps_value = self.user_defined_strategy.localsgd_configs['k_steps']
        begin_step_value = self.user_defined_strategy.localsgd_configs[
            'begin_step']
Y
Yi Liu 已提交
97 98 99 100 101 102 103 104

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
105 106
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)
Y
Yi Liu 已提交
107

108 109
        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
110
            step = layers.autoincreased_step_counter(begin=1)
Y
Yi Liu 已提交
111 112 113
            k_steps = layers.create_global_var(
                name="k_steps",
                shape=[1],
114
                value=k_steps_value,
Y
Yi Liu 已提交
115 116
                dtype='int64',
                persistable=True)
117 118 119 120 121 122 123 124

            begin_step = layers.create_global_var(
                name="begin_step",
                shape=[1],
                value=begin_step_value,
                dtype='int64',
                persistable=True)

Y
Yi Liu 已提交
125 126 127
            last_step = layers.create_global_var(
                name="last_step",
                shape=[1],
128
                value=begin_step_value,
Y
Yi Liu 已提交
129 130 131 132
                dtype='int64',
                persistable=True)

            def communicate():
133
                sub_block = default_main_program().current_block()
Y
Yi Liu 已提交
134
                ring_id = -1
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                for param, snapshot in p2s:
                    sub_block.append_op(
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(
                        type='c_sync_calc_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    ring_id = (ring_id + 1) % self.nrings
                    sub_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })
Y
Yi Liu 已提交
156 157

                for ring_id in range(self.nrings):
158
                    sub_block.append_op(
Y
Yi Liu 已提交
159 160 161 162 163 164 165 166
                        type='c_sync_comm_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })

167 168
                for param, snapshot in p2s:
                    sub_block.append_op(
Y
Yi Liu 已提交
169 170 171 172
                        type='scale',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
173
                            'scale': 1.0 / self.role_maker._worker_num(),
Y
Yi Liu 已提交
174 175
                            OP_ROLE_KEY: OpRole.Optimize
                        })
176
                    sub_block.append_op(
Y
Yi Liu 已提交
177 178 179 180 181
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
182
                    sub_block.append_op(
Y
Yi Liu 已提交
183 184 185 186 187 188
                        type='assign',
                        inputs={'X': [param]},
                        outputs={'Out': [snapshot]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                layers.assign(step, last_step)

189 190
            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate)
Y
Yi Liu 已提交
191

192
            layers.cond(step > begin_step, begin_localsgd, communicate)
Y
Yi Liu 已提交
193
        return minimized
194 195 196 197 198 199


class AdaptiveLocalSGDOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(AdaptiveLocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
200
        self.meta_optimizers_white_list = ['AMPOptimizer']
201 202 203 204 205 206 207 208 209 210 211 212
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer", "LocalSGDOptimizer"
        ]
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if not self.user_defined_strategy.adaptive_localsgd:
            return False

213
        if self.role_maker._worker_num() <= 1:
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            return False

        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)

    def _disable_strategy(self, dist_strategy):
        dist_strategy.adaptive_localsgd = False
        dist_strategy.adaptive_localsgd_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.adaptive_localsgd = True
        dist_strategy.adaptive_localsgd_configs = {
            "init_k_steps": 1,
            "begin_step": 1
        }

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True,
                dtype=param.dtype)
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

    def _generate_avg_loss(self, program_block, loss, avg_loss):
        program_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [loss]},
            outputs={'Out': [avg_loss]},
            attrs={
                'ring_id': 0,
                OP_ROLE_KEY: OpRole.Optimize,
                'use_calc_stream': True
            })
        program_block.append_op(
            type='c_sync_calc_stream',
            inputs={'X': [avg_loss]},
            outputs={'Out': [avg_loss]},
            attrs={OP_ROLE_KEY: OpRole.Optimize})

        program_block.append_op(
            type='scale',
            inputs={'X': [avg_loss]},
            outputs={'Out': [avg_loss]},
            attrs={
280
                'scale': 1.0 / self.role_maker._worker_num(),
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                OP_ROLE_KEY: OpRole.Optimize
            })

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        minimized = self.inner_opt.minimize(
            loss, startup_program=startup_program)

        init_k_steps = self.user_defined_strategy.adaptive_localsgd_configs[
            'init_k_steps']
        begin_step_value = self.user_defined_strategy.adaptive_localsgd_configs[
            'begin_step']

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)

        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
            step = layers.autoincreased_step_counter(begin=1)

            k_steps = layers.create_global_var(
                name="k_steps",
                shape=[1],
                value=int(init_k_steps),
                dtype='int64',
                persistable=True)

            begin_step = layers.create_global_var(
                name="begin_step",
                shape=[1],
                value=int(begin_step_value),
                dtype='int64',
                persistable=True)

            last_step = layers.create_global_var(
                name="last_step",
                shape=[1],
                value=int(0),
                dtype='int64',
                persistable=True)

            avg_loss = layers.create_global_var(
                name="avg_loss",
                shape=[1],
                value=float(0),
                dtype=loss.dtype,
                persistable=True)

            lr_0 = layers.create_global_var(
                name="lr_0",
                shape=[1],
                value=float(0),
                dtype='float32',
                persistable=True)

            loss_0 = layers.create_global_var(
                name="loss_0",
                shape=[1],
                value=float(0),
                dtype='float32',
                persistable=True)

            global_lr = self.inner_opt._global_learning_rate()

            def initialize():
                self._generate_avg_loss(main_block, loss, avg_loss)
                layers.assign(avg_loss, loss_0)
                layers.assign(global_lr, lr_0)

            layers.cond(step == 1, initialize)

            def communicate():
                sub_block = default_main_program().current_block()
                ring_id = -1
                for param, snapshot in p2s:
                    sub_block.append_op(
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(
                        type='c_sync_calc_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    ring_id = (ring_id + 1) % self.nrings
                    sub_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })

                for ring_id in range(self.nrings):
                    sub_block.append_op(
                        type='c_sync_comm_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })

                for param, snapshot in p2s:
                    sub_block.append_op(
                        type='scale',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
403
                            'scale': 1.0 / self.role_maker._worker_num(),
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                            OP_ROLE_KEY: OpRole.Optimize
                        })
                    sub_block.append_op(
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(
                        type='assign',
                        inputs={'X': [param]},
                        outputs={'Out': [snapshot]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                layers.assign(step, last_step)

            def communicate_avg_loss():
                communicate()
                self._generate_avg_loss(main_block, loss, avg_loss)
                next_local_steps = layers.cast(
                    layers.ceil(
                        layers.sqrt(lr_0 * avg_loss / (global_lr * loss_0) *
                                    float(init_k_steps))),
                    dtype='int64')
                max_local_steps = layers.fill_constant(
                    shape=[1], dtype='int64', value=16)
                min_local_steps = layers.fill_constant(
                    shape=[1], dtype='int64', value=1)
                next_local_steps = layers.elementwise_min(next_local_steps,
                                                          max_local_steps)
                next_local_steps = layers.elementwise_max(next_local_steps,
                                                          min_local_steps)
                layers.assign(next_local_steps, k_steps)

            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate_avg_loss)

            layers.cond(step > begin_step, begin_localsgd, communicate)

        return minimized