Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
427c5529
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
427c5529
编写于
8月 01, 2020
作者:
Y
Yi Liu
提交者:
GitHub
8月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add localsgd meta optimizer (#25758)
* add localsgd meta optimizer
上级
2d24f56a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
387 addition
and
5 deletion
+387
-5
python/paddle/fleet/base/meta_optimizer_factory.py
python/paddle/fleet/base/meta_optimizer_factory.py
+2
-0
python/paddle/fleet/meta_optimizers/__init__.py
python/paddle/fleet/meta_optimizers/__init__.py
+2
-0
python/paddle/fleet/meta_optimizers/common.py
python/paddle/fleet/meta_optimizers/common.py
+126
-0
python/paddle/fleet/meta_optimizers/localsgd_optimizer.py
python/paddle/fleet/meta_optimizers/localsgd_optimizer.py
+193
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+9
-5
python/paddle/fluid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
...uid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
+55
-0
未找到文件。
python/paddle/fleet/base/meta_optimizer_factory.py
浏览文件 @
427c5529
...
...
@@ -16,6 +16,7 @@ from ..meta_optimizers import RecomputeOptimizer
from
..meta_optimizers
import
GradientMergeOptimizer
from
..meta_optimizers
import
GraphExecutionOptimizer
from
..meta_optimizers
import
PipelineOptimizer
from
..meta_optimizers
import
LocalSGDOptimizer
__all__
=
[
"MetaOptimizerFactory"
]
...
...
@@ -24,6 +25,7 @@ meta_optimizer_names = [
"GradientMergeOptimizer"
,
"GraphExecutionOptimizer"
,
"PipelineOptimizer"
,
"LocalSGDOptimizer"
,
]
...
...
python/paddle/fleet/meta_optimizers/__init__.py
浏览文件 @
427c5529
...
...
@@ -15,9 +15,11 @@ from .recompute_optimizer import RecomputeOptimizer
from
.gradient_merge_optimizer
import
GradientMergeOptimizer
from
.graph_execution_optimizer
import
GraphExecutionOptimizer
from
.pipeline_optimizer
import
PipelineOptimizer
from
.localsgd_optimizer
import
LocalSGDOptimizer
__all__
=
[
'RecomputeOptimizer'
,
'GradientMergeOptimizer'
,
'PipelineOptimizer'
,
'LocalSGDOptimizer'
,
]
python/paddle/fleet/meta_optimizers/common.py
0 → 100644
浏览文件 @
427c5529
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
..base.private_helper_function
import
wait_server_ready
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
OP_ROLE_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
OP_ROLE_VAR_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
def
is_update_op
(
op
):
return
'Param'
in
op
.
input_names
and
'Grad'
in
op
.
input_names
and
\
"LearningRate"
in
op
.
input_names
def
is_loss_grad_op
(
op
):
if
OP_ROLE_KEY
not
in
op
.
attr_names
:
return
False
op_role
=
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
return
op_role
&
int
(
OpRole
.
Backward
)
and
op_role
&
int
(
OpRole
.
Loss
)
def
is_backward_op
(
op
):
return
OP_ROLE_KEY
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
&
int
(
OpRole
.
Backward
)
def
is_optimizer_op
(
op
):
return
OP_ROLE_KEY
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
&
int
(
OpRole
.
Optimize
)
class
CollectiveHelper
(
object
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
'6174'
):
self
.
nrings
=
nrings
self
.
wait_port
=
wait_port
self
.
role_maker
=
role_maker
def
update_startup_program
(
self
,
startup_program
=
None
):
self
.
startup_program
=
startup_program
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
for
ring_id
in
range
(
self
.
nrings
):
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
endpoints
,
self
.
role_maker
.
worker_index
(),
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
()
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
def
_broadcast_params
(
self
):
block
=
self
.
startup_program
.
global_block
()
ring_id
=
-
1
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
ring_id
=
(
ring_id
+
1
)
%
self
.
nrings
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
for
ring_id
in
range
(
self
.
nrings
):
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
python/paddle/fleet/meta_optimizers/localsgd_optimizer.py
0 → 100644
浏览文件 @
427c5529
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddle.fluid
import
program_guard
,
layers
from
paddle.fluid.optimizer
import
Momentum
,
SGD
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
CollectiveHelper
,
is_update_op
class
LocalSGDOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
LocalSGDOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
self
.
meta_optimizers_white_list
=
[]
self
.
snapshot_key
=
'@SNAPSHOT'
def
_can_apply
(
self
):
if
not
self
.
user_defined_strategy
.
localsgd
:
return
False
if
self
.
role_maker
.
worker_num
()
<=
1
:
return
False
return
isinstance
(
self
.
inner_opt
,
Momentum
)
\
or
isinstance
(
self
.
inner_opt
,
SGD
)
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
localsgd
=
False
dist_strategy
.
localsgd_configs
=
{
'k_steps'
:
1
}
def
snapshot_name
(
self
,
param_name
):
return
param_name
+
self
.
snapshot_key
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
init_k_steps
=
self
.
user_defined_strategy
.
localsgd_configs
[
'k_steps'
]
auto_steps
=
self
.
user_defined_strategy
.
auto
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
main_block
=
loss
.
block
self
.
nrings
=
2
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
self
.
nrings
)
collective_helper
.
update_startup_program
(
startup_program
)
with
program_guard
(
main_block
.
program
):
step
=
layers
.
autoincreased_step_counter
(
begin
=
0
)
k_steps
=
layers
.
create_global_var
(
name
=
"k_steps"
,
shape
=
[
1
],
value
=
init_k_steps
,
dtype
=
'int64'
,
persistable
=
True
)
last_step
=
layers
.
create_global_var
(
name
=
"last_step"
,
shape
=
[
1
],
value
=
int
(
0
),
dtype
=
'int64'
,
persistable
=
True
)
if
auto_steps
:
lr_0
=
layers
.
create_global_var
(
name
=
"lr_0"
,
shape
=
[
1
],
value
=
float
(
0
),
dtype
=
'float32'
,
persistable
=
True
)
loss_0
=
layers
.
create_global_var
(
name
=
"loss_0"
,
shape
=
[
1
],
value
=
float
(
0
),
dtype
=
'float32'
,
persistable
=
True
)
global_lr
=
self
.
inner_opt
.
_global_learning_rate
()
def
initialize
():
layers
.
assign
(
loss
,
loss_0
)
layers
.
assign
(
global_lr
,
lr_0
)
layers
.
cond
(
step
==
0
,
initialize
)
def
communicate
():
ordered_param_snapshot
=
[]
ring_id
=
-
1
for
idx
,
op
in
reversed
(
list
(
enumerate
(
main_block
.
ops
))):
if
is_update_op
(
op
):
param
=
main_block
.
vars
[
op
.
input
(
'Param'
)[
0
]]
if
param
.
is_distributed
:
continue
snapshot
=
main_block
.
create_var
(
name
=
self
.
snapshot_name
(
param
.
name
),
shape
=
param
.
shape
,
persistable
=
True
,
stop_gradient
=
True
,
dtype
=
param
.
dtype
)
main_block
.
_insert_op
(
idx
+
1
,
type
=
'elementwise_sub'
,
inputs
=
{
'X'
:
[
snapshot
],
'Y'
:
[
param
]},
outputs
=
{
'Out'
:
[
param
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
main_block
.
_insert_op
(
idx
+
2
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
ring_id
=
(
ring_id
+
1
)
%
self
.
nrings
main_block
.
_insert_op
(
idx
+
3
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
[
param
]},
outputs
=
{
'Out'
:
[
param
]},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
ordered_param_snapshot
.
append
((
param
,
snapshot
))
for
ring_id
in
range
(
self
.
nrings
):
main_block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
for
param_snapshot
in
reversed
(
ordered_param_snapshot
):
param
=
param_snapshot
[
0
]
snapshot
=
param_snapshot
[
1
]
main_block
.
append_op
(
type
=
'scale'
,
inputs
=
{
'X'
:
[
param
]},
outputs
=
{
'Out'
:
[
param
]},
attrs
=
{
'scale'
:
1.0
/
self
.
role_maker
.
worker_num
(),
OP_ROLE_KEY
:
OpRole
.
Optimize
})
main_block
.
append_op
(
type
=
'elementwise_sub'
,
inputs
=
{
'X'
:
[
snapshot
],
'Y'
:
[
param
]},
outputs
=
{
'Out'
:
[
param
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
main_block
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
param
]},
outputs
=
{
'Out'
:
[
snapshot
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
if
auto_steps
:
next_local_steps
=
layers
.
cast
(
layers
.
ceil
(
layers
.
sqrt
(
lr_0
*
loss
/
(
global_lr
*
loss_0
)
*
float
(
init_k_steps
))),
dtype
=
'int64'
)
max_local_steps
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
16
)
next_local_steps
=
layers
.
elementwise_min
(
next_local_steps
,
max_local_steps
)
layers
.
assign
(
next_local_steps
,
k_steps
)
layers
.
assign
(
step
,
last_step
)
layers
.
cond
(
step
-
last_step
==
k_steps
,
communicate
)
return
minimized
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
427c5529
...
...
@@ -34,6 +34,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_base)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_localsgd_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_private_function
)
foreach
(
TEST_OP
${
MIXED_DIST_TEST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
...
...
@@ -363,11 +364,14 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_communicator_sync MODULES test_communicator_sync ENVS
${
dist_ENVS
}
FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1
)
py_test_modules
(
test_collective_optimizer MODULES test_collective_optimizer
)
if
(
NOT APPLE
)
py_test_modules
(
test_fleet_base MODULES test_fleet_base ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer MODULES test_fleet_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_pipeline_meta_optimizer MODULES test_fleet_pipeline_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_gradient_merge_meta_optimizer MODULES test_fleet_gradient_merge_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_base MODULES test_fleet_base ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer MODULES test_fleet_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_pipeline_meta_optimizer MODULES test_fleet_pipeline_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_gradient_merge_meta_optimizer MODULES test_fleet_gradient_merge_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
if
(
NOT WIN32
)
py_test_modules
(
test_fleet_localsgd_meta_optimizer MODULES test_fleet_localsgd_meta_optimizer ENVS
${
dist_ENVS
}
)
endif
(
NOT WIN32
)
endif
(
NOT APPLE
)
if
(
WITH_DGC
)
# if with dgc, test all dgc tests.
...
...
python/paddle/fluid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
0 → 100644
浏览文件 @
427c5529
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
class
TestFleetLocalSGDMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
test_localsgd_optimizer
(
self
):
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
localsgd
=
True
strategy
.
auto
=
True
config
=
strategy
.
localsgd_configs
config
[
'k_steps'
]
=
1
strategy
.
localsgd_configs
=
config
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录