pipeline_mnist.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
16

17
from test_dist_base import TestDistRunnerBase, runtime_main
18 19

import paddle
20
import paddle.distributed.fleet as fleet
21
import paddle.fluid as fluid
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
41 42 43 44
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
45 46 47 48 49 50 51
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
52 53 54 55
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
56 57 58 59

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
60
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
61

62 63 64 65 66 67
    with fluid.device_guard("gpu:1"):
        predict = fluid.layers.fc(
            input=conv_pool_2,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
68 69 70
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
71 72 73 74 75 76
        # To cover @RENAMED@GRADIENT
        predict2 = fluid.layers.fc(
            input=conv_pool_1,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
77 78 79
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
80
        predict += predict2
81 82 83 84 85 86 87
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
        # Input data
        with fluid.device_guard("gpu:0"):
88 89 90
            images = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype=DTYPE
            )
91 92 93 94 95 96 97
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

            if dist_strategy:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[images, label],
                    capacity=64,
                    use_double_buffer=False,
98 99
                    iterable=False,
                )
100 101 102
            # Train program
            predict = cnn_model(images)
        with fluid.device_guard("gpu:1"):
103 104 105
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
106
            avg_cost = paddle.mean(x=cost)
107 108 109

        # Evaluator
        with fluid.device_guard("gpu:1"):
110
            batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
111
            batch_acc = paddle.static.accuracy(
112 113
                input=predict, label=label, total=batch_size_tensor
            )
114 115 116 117 118 119 120

        inference_program = fluid.default_main_program().clone()
        base_lr = self.lr
        passes = [30, 60, 80, 90]
        steps_per_pass = 10
        bd = [steps_per_pass * p for p in passes]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
121 122 123
        lr_val = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)

        opt = paddle.optimizer.AdamW(
124
            learning_rate=lr_val,
125
            grad_clip=paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0),
126
        )
127

128
        acc_steps = 2  # accumulated steps for pipeline
129
        if dist_strategy:
130
            # Reader
131 132 133 134 135 136
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
137 138 139
            fleet.init(is_collective=True)
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
140
            strategy.amp = True
141 142 143
            strategy.pipeline_configs = {
                'micro_batch_size': batch_size,
                'schedule_mode': '1F1B',
144
                'accumulate_steps': acc_steps,
145
            }
146 147 148
            dist_opt = fleet.distributed_optimizer(
                optimizer=opt, strategy=strategy
            )
149 150 151
            dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)
152
            # Reader
153 154 155 156 157 158
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
159 160

        if dist_strategy:
161 162 163 164 165 166 167 168 169
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
                data_loader,
            )
170
        else:
171 172 173 174 175 176 177 178
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            )
179 180 181 182


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)