pipeline_mnist.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
import paddle.distributed.fleet as fleet

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
39 40 41 42
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
43 44 45 46 47 48 49
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
50 51 52 53
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
54 55 56 57

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
58
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
59

60 61 62 63 64 65
    with fluid.device_guard("gpu:1"):
        predict = fluid.layers.fc(
            input=conv_pool_2,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
66 67 68
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
69 70 71 72 73 74
        # To cover @RENAMED@GRADIENT
        predict2 = fluid.layers.fc(
            input=conv_pool_1,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
75 76 77
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
78
        predict += predict2
79 80 81 82 83 84 85
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
        # Input data
        with fluid.device_guard("gpu:0"):
86 87 88
            images = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype=DTYPE
            )
89 90 91 92 93 94 95
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

            if dist_strategy:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[images, label],
                    capacity=64,
                    use_double_buffer=False,
96 97
                    iterable=False,
                )
98 99 100 101
            # Train program
            predict = cnn_model(images)
        with fluid.device_guard("gpu:1"):
            cost = fluid.layers.cross_entropy(input=predict, label=label)
102
            avg_cost = paddle.mean(x=cost)
103 104 105 106

        # Evaluator
        with fluid.device_guard("gpu:1"):
            batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
107 108 109
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size_tensor
            )
110 111 112 113 114 115 116

        inference_program = fluid.default_main_program().clone()
        base_lr = self.lr
        passes = [30, 60, 80, 90]
        steps_per_pass = 10
        bd = [steps_per_pass * p for p in passes]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
117 118 119
        lr_val = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)

        opt = paddle.optimizer.AdamW(
120
            learning_rate=lr_val,
121 122
            grad_clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0),
        )
123

124
        acc_steps = 2  # accumulated steps for pipeline
125
        if dist_strategy:
126
            # Reader
127 128 129 130 131 132
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
133 134 135
            fleet.init(is_collective=True)
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
136
            strategy.amp = True
137 138 139
            strategy.pipeline_configs = {
                'micro_batch_size': batch_size,
                'schedule_mode': '1F1B',
140
                'accumulate_steps': acc_steps,
141
            }
142 143 144
            dist_opt = fleet.distributed_optimizer(
                optimizer=opt, strategy=strategy
            )
145 146 147
            dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)
148
            # Reader
149 150 151 152 153 154
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
155 156

        if dist_strategy:
157 158 159 160 161 162 163 164 165
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
                data_loader,
            )
166
        else:
167 168 169 170 171 172 173 174
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            )
175 176 177 178


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)