activation_op_npu.cc 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
19
#include "paddle/fluid/framework/framework.pb.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class PowNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto factor = ctx.Attr<float>("factor");

    out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
39 40 41 42
    const auto& runner = NpuOpRunner("Power", {*x}, {*out},
                                     {{"power", factor},
                                      {"scale", static_cast<float>(1.0)},
                                      {"shift", static_cast<float>(0.0)}});
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class PowGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto factor = ctx.Attr<float>("factor");

    auto x_dims = x->dims();

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // NOTE(liym27): dx = dout * factor * x.pow(factor-1)

    // Step1: Compute x_pow = x.pow(factor-1)
    Tensor x_pow(x->type());
    x_pow.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
72 73
    const auto& runner_pow = NpuOpRunner(
        "Power", {*x}, {x_pow}, {{"power", factor - static_cast<float>(1)}});
74 75 76 77 78 79 80
    runner_pow.Run(stream);

    // Step 2: Construct a broadcast factor, which has the same shape with x.

    // 2.1 Get a factor tensor with shape [1].
    Tensor factor_tensor(framework::proto::VarType::FP32);
    factor_tensor.mutable_data<float>({1}, place);
81
    FillNpuTensorWithConstant<float>(&factor_tensor, factor);
82 83 84 85 86

    // 2.2 Get the factor which has the shape with x and the same value with
    // factor.
    Tensor factor_bc_tensor(framework::proto::VarType::FP32);
    factor_bc_tensor.mutable_data<float>(x_dims, place);
L
Leo Chen 已提交
87 88 89
    const auto& runner_bc =
        NpuOpRunner("FillD", {factor_tensor}, {factor_bc_tensor},
                    {{"dims", framework::vectorize(x_dims)}});
90 91 92 93 94
    runner_bc.Run(stream);

    // Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
    Tensor x_power_mul_factor(x->type());
    x_power_mul_factor.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
95
    const auto& runner_mul_1 =
96 97 98 99 100
        NpuOpRunner("Mul", {factor_bc_tensor, x_pow}, {x_power_mul_factor}, {});
    runner_mul_1.Run(stream);

    // Step 4: Compute dx = dout * factor * x.pow(factor-1)
    dx->mutable_data<T>(place);
L
Leo Chen 已提交
101
    const auto& runner_mul_2 =
102 103 104 105 106 107 108 109 110 111 112 113 114 115
        NpuOpRunner("Mul", {*dout, x_power_mul_factor}, {*dx}, {});
    runner_mul_2.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReluNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
116 117 118 119 120
    const auto& runner = NpuOpRunner("Relu",
                                     {
                                         *x,
                                     },
                                     {*out}, {});
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReluGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
142
    const auto& runner = NpuOpRunner("ReluGrad", {*dout, *out}, {*dx}, {});
143 144 145 146 147

    runner.Run(stream);
  }
};

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <typename DeviceContext, typename T>
class Relu6NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

    const auto& runner = NpuOpRunner("Relu6",
                                     {
                                         *x,
                                     },
                                     {*out}, {});

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class Relu6GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    dx->mutable_data<T>(ctx.GetPlace());
    const auto& runner = NpuOpRunner("Relu6Grad", {*dout, *out}, {*dx}, {});

    runner.Run(stream);
  }
};

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
template <typename DeviceContext, typename T>
class SqrtNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
205
    const auto& runner = NpuOpRunner("Sqrt", {*x}, {*out}, {});
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SqrtGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
227 228
    const auto& runner_dx = NpuOpRunner("SqrtGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  }
};

template <typename DeviceContext, typename T>
class LogNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor one(x->type());
    one.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
250 251
    const auto& runner_one = NpuOpRunner("OnesLike", {*x}, {one}, {});
    runner_one.Run(stream);
252 253 254

    Tensor sub(x->type());
    sub.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
255 256
    const auto& runner_sub = NpuOpRunner("Sub", {*x, one}, {sub}, {});
    runner_sub.Run(stream);
257

L
Leo Chen 已提交
258 259
    const auto& runner_out = NpuOpRunner("Log1p", {sub}, {*out}, {});
    runner_out.Run(stream);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  }
};

template <typename DeviceContext, typename T>
class LogGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
279
    const auto& runner = NpuOpRunner("DivNoNan", {*dout, *x}, {*dx}, {});
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
300
    const auto& runner = NpuOpRunner("Tanh", {*x}, {*out}, {});
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
322 323
    const auto& runner_dx = NpuOpRunner("TanhGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  }
};

template <typename DeviceContext, typename T>
class SquareNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
343
    const auto& runner = NpuOpRunner("Square", {*x}, {*out}, {});
344 345 346 347
    runner.Run(stream);
  }
};

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
template <typename DeviceContext, typename T>
class SigmoidNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner = NpuOpRunner("Sigmoid", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SigmoidGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner_dx =
        NpuOpRunner("SigmoidGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
  }
};

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
// HardSwish = min(max(0, x+offset), threshold) * x / scale
template <typename T>
class HardSwishNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor tensor_offset(x->type());
    tensor_offset.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_offset, static_cast<T>(offset));

    Tensor add_offset_val(x->type());
    add_offset_val.mutable_data<T>(x->dims(), place);
    const auto& runner_add =
        NpuOpRunner("AddV2", {*x, tensor_offset}, {add_offset_val});
    runner_add.Run(stream);

    Tensor tensor_threshold(x->type());
    tensor_threshold.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_threshold, static_cast<T>(threshold));

    Tensor tensor_zero(x->type());
    tensor_zero.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_zero, static_cast<T>(0.0));

    Tensor clip_val(x->type());
    clip_val.mutable_data<T>(x->dims(), place);
    const auto& runner_clip = NpuOpRunner(
        "ClipByValue", {add_offset_val, tensor_zero, tensor_threshold},
        {clip_val});
    runner_clip.Run(stream);

    Tensor tensor_scale_tmp(x->type());
    tensor_scale_tmp.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_scale_tmp, static_cast<T>(scale));
    Tensor tensor_scale(x->type());
    tensor_scale.mutable_data<T>(x->dims(), place);
    const auto& runner_fill =
        NpuOpRunner("FillD", {tensor_scale_tmp}, {tensor_scale},
                    {{"dims", framework::vectorize(x->dims())}});
    runner_fill.Run(stream);

    Tensor div_val(x->type());
    div_val.mutable_data<T>(x->dims(), place);
    const auto& runner_div =
        NpuOpRunner("Div", {clip_val, tensor_scale}, {div_val});
    runner_div.Run(stream);

    const auto& runner_mul = NpuOpRunner("Mul", {*x, div_val}, {*out});
    runner_mul.Run(stream);
  }
};

template <typename T>
class HardSwishGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor tensor_offset(x->type());
    tensor_offset.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_offset, static_cast<T>(offset));

    Tensor add_offset_val(x->type());
    add_offset_val.mutable_data<T>(x->dims(), place);
    const auto& runner_add =
        NpuOpRunner("AddV2", {*x, tensor_offset}, {add_offset_val});
    runner_add.Run(stream);

    Tensor tmp1(x->type());
    tmp1.mutable_data<T>(x->dims(), place);
    const auto& runner_pow1 = NpuOpRunner("Power", {*x}, {tmp1},
                                          {{"scale", 2.0f}, {"shift", offset}});
    runner_pow1.Run(stream);

    Tensor tmp2(x->type());
    tmp2.mutable_data<T>(x->dims(), place);
    const auto& runner_ht_grad =
        NpuOpRunner("HardtanhGrad", {add_offset_val, tmp1}, {tmp2},
                    {{"min_val", 0.0f}, {"max_val", threshold}});
    runner_ht_grad.Run(stream);

    Tensor tmp3(x->type());
    tmp3.mutable_data<T>(x->dims(), place);
    const auto& runner_pow2 = NpuOpRunner(
        "Power", {tmp2}, {tmp3}, {{"scale", 1.0f / scale}, {"shift", 1.0f}});
    runner_pow2.Run(stream);

    Tensor tensor_threshold_tmp(x->type());
    tensor_threshold_tmp.mutable_data<T>({1}, place);
    FillNpuTensorWithConstant<T>(&tensor_threshold_tmp,
                                 static_cast<T>(threshold));
    Tensor tensor_threshold(x->type());
    tensor_threshold.mutable_data<T>(x->dims(), place);
    const auto& runner_fill =
        NpuOpRunner("FillD", {tensor_threshold_tmp}, {tensor_threshold},
                    {{"dims", framework::vectorize(x->dims())}});
    runner_fill.Run(stream);

    Tensor tmp_bool(framework::proto::VarType::BOOL);
    tmp_bool.mutable_data<bool>(x->dims(), place);
    const auto& runner_less =
        NpuOpRunner("Less", {add_offset_val, tensor_threshold}, {tmp_bool});
    runner_less.Run(stream);
    Tensor tmp4(x->type());
    tmp4.mutable_data<T>(x->dims(), place);
    auto dst_dtype = ConvertToNpuDtype(x->type());
    const auto& runner_cast =
        NpuOpRunner("Cast", {tmp_bool}, {tmp4},
                    {{"dst_type", static_cast<int>(dst_dtype)}});
    runner_cast.Run(stream);

    Tensor tmp5(x->type());
    tmp5.mutable_data<T>(x->dims(), place);
    const auto& runner_sub = NpuOpRunner("Sub", {tmp3, tmp4}, {tmp5});
    runner_sub.Run(stream);

    const auto& runner_final = NpuOpRunner("Mul", {tmp5, *dout}, {*dx});
    runner_final.Run(stream);
  }
};

F
furnace 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
template <typename DeviceContext, typename T>
class HardSigmoidNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    float slope = ctx.Attr<float>("slope");
    float offset = ctx.Attr<float>("offset");

    out->mutable_data<T>(ctx.GetPlace());

    framework::NPUAttributeMap attr_input = {{"alpha", slope},
                                             {"beta", offset}};

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner = NpuOpRunner("HardSigmoid", {*x}, {*out}, attr_input);
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class HardSigmoidGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    float slope = ctx.Attr<float>("slope");
    float offset = ctx.Attr<float>("offset");

    dx->mutable_data<T>(ctx.GetPlace());

    framework::NPUAttributeMap attr_input = {{"alpha", slope},
                                             {"beta", offset}};

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner_dx =
        NpuOpRunner("HardSigmoidGrad", {*dout, *out}, {*dx}, attr_input);
    runner_dx.Run(stream);
  }
};

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
template <typename DeviceContext, typename T>
class ReciprocalNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner = NpuOpRunner("Reciprocal", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReciprocalGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();
    dx->mutable_data<T>(place);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner_dx =
        NpuOpRunner("ReciprocalGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
  }
};

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
template <typename DeviceContext, typename T>
class CosNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner = NpuOpRunner("Cos", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class CosGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();
    dx->mutable_data<T>(place);

    Tensor sin_out(x->type());  // Temporary Tensor
    sin_out.Resize(x->dims());
    sin_out.mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner = NpuOpRunner("Sin", {*x}, {sin_out}, {});
    runner.Run(stream);

    const auto& runner_dx = NpuOpRunner("Mul", {*dout, sin_out}, {*dx}, {});
    runner_dx.Run(stream);

    Tensor tmp(x->type());  // Temporary Tensor
    tmp.Resize(framework::make_ddim({1, 1}));
    tmp.mutable_data<T>(place);
    float factor = -1.;
    FillNpuTensorWithConstant<T>(&tmp, static_cast<T>(factor));

    const auto& runner_dx_ = NpuOpRunner("Xdivy", {*dx, tmp}, {*dx}, {});
    runner_dx_.Run(stream);
    // dx = -dout * Sine(x);
  }
};

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
template <typename DeviceContext, typename T>
class AtanNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
    const auto& runner = NpuOpRunner("Atan", {*x}, {*out}, {});
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class AtanGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();
    dx->mutable_data<T>(place);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner_dx = NpuOpRunner("AtanGrad", {*x, *dout}, {*dx}, {});
    runner_dx.Run(stream);
  }
};

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
template <typename DeviceContext, typename T>
class ExpNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* out = ctx.Output<framework::Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    const auto& runner = NpuOpRunner("Exp", {*x}, {*out}, {});
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ExpGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner = NpuOpRunner("Mul", {*dout, *out}, {*dx}, {});
    runner.Run(stream);
  }
};

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    pow, ops::PowNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::PowNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    pow_grad, ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu, ops::ReluNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReluNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu_grad,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

770 771 772 773 774 775 776 777 778 779 780
REGISTER_OP_NPU_KERNEL(
    relu6, ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext,
                        paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu6_grad,
    ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext,
                            paddle::platform::float16>);

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
REGISTER_OP_NPU_KERNEL(
    sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    sqrt_grad,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    log, ops::LogNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::LogNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    log_grad, ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    tanh, ops::TanhNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::TanhNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    tanh_grad,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    square, ops::SquareNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SquareNPUKernel<paddle::platform::NPUDeviceContext,
                         paddle::platform::float16>,
    ops::SquareNPUKernel<paddle::platform::NPUDeviceContext, int>);
818 819 820 821 822 823 824 825 826 827 828

REGISTER_OP_NPU_KERNEL(
    sigmoid, ops::SigmoidNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SigmoidNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    sigmoid_grad,
    ops::SigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SigmoidGradNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);
F
furnace 已提交
829

830 831 832 833 834 835
REGISTER_OP_NPU_KERNEL(hard_swish, ops::HardSwishNPUKernel<float>,
                       ops::HardSwishNPUKernel<paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(hard_swish_grad, ops::HardSwishGradNPUKernel<float>,
                       ops::HardSwishGradNPUKernel<paddle::platform::float16>);

F
furnace 已提交
836 837 838 839 840 841 842 843 844 845 846
REGISTER_OP_NPU_KERNEL(
    hard_sigmoid,
    ops::HardSigmoidNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::HardSigmoidNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    hard_sigmoid_grad,
    ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext,
                                  paddle::platform::float16>);
847 848 849 850 851 852 853 854 855 856 857 858 859 860

REGISTER_OP_NPU_KERNEL(
    reciprocal,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext,
                             paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    reciprocal_grad,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext,
                                 paddle::platform::float16>);
861 862 863 864 865 866 867 868 869 870

REGISTER_OP_NPU_KERNEL(
    cos, ops::CosNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::CosNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    cos_grad, ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);
871 872 873 874 875 876 877 878 879 880 881

REGISTER_OP_NPU_KERNEL(
    atan, ops::AtanNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::AtanNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    atan_grad,
    ops::AtanGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::AtanGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);
882 883 884 885 886 887 888 889

REGISTER_OP_NPU_KERNEL(
    exp, ops::ExpNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ExpNPUKernel<paddle::platform::NPUDeviceContext, double>);

REGISTER_OP_NPU_KERNEL(
    exp_grad, ops::ExpGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ExpGradNPUKernel<paddle::platform::NPUDeviceContext, double>);