activation_op_npu.cc 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class PowNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto factor = ctx.Attr<float>("factor");

    out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
38 39 40 41
    const auto& runner = NpuOpRunner("Power", {*x}, {*out},
                                     {{"power", factor},
                                      {"scale", static_cast<float>(1.0)},
                                      {"shift", static_cast<float>(0.0)}});
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class PowGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto factor = ctx.Attr<float>("factor");

    auto x_dims = x->dims();

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // NOTE(liym27): dx = dout * factor * x.pow(factor-1)

    // Step1: Compute x_pow = x.pow(factor-1)
    Tensor x_pow(x->type());
    x_pow.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
71 72
    const auto& runner_pow = NpuOpRunner(
        "Power", {*x}, {x_pow}, {{"power", factor - static_cast<float>(1)}});
73 74 75 76 77 78 79
    runner_pow.Run(stream);

    // Step 2: Construct a broadcast factor, which has the same shape with x.

    // 2.1 Get a factor tensor with shape [1].
    Tensor factor_tensor(framework::proto::VarType::FP32);
    factor_tensor.mutable_data<float>({1}, place);
80
    FillNpuTensorWithConstant<float>(&factor_tensor, factor);
81 82 83 84 85

    // 2.2 Get the factor which has the shape with x and the same value with
    // factor.
    Tensor factor_bc_tensor(framework::proto::VarType::FP32);
    factor_bc_tensor.mutable_data<float>(x_dims, place);
L
Leo Chen 已提交
86 87 88
    const auto& runner_bc =
        NpuOpRunner("FillD", {factor_tensor}, {factor_bc_tensor},
                    {{"dims", framework::vectorize(x_dims)}});
89 90 91 92 93
    runner_bc.Run(stream);

    // Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
    Tensor x_power_mul_factor(x->type());
    x_power_mul_factor.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
94
    const auto& runner_mul_1 =
95 96 97 98 99
        NpuOpRunner("Mul", {factor_bc_tensor, x_pow}, {x_power_mul_factor}, {});
    runner_mul_1.Run(stream);

    // Step 4: Compute dx = dout * factor * x.pow(factor-1)
    dx->mutable_data<T>(place);
L
Leo Chen 已提交
100
    const auto& runner_mul_2 =
101 102 103 104 105 106 107 108 109 110 111 112 113 114
        NpuOpRunner("Mul", {*dout, x_power_mul_factor}, {*dx}, {});
    runner_mul_2.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReluNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
115 116 117 118 119
    const auto& runner = NpuOpRunner("Relu",
                                     {
                                         *x,
                                     },
                                     {*out}, {});
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReluGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
141
    const auto& runner = NpuOpRunner("ReluGrad", {*dout, *out}, {*dx}, {});
142 143 144 145 146

    runner.Run(stream);
  }
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
template <typename DeviceContext, typename T>
class Relu6NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

    const auto& runner = NpuOpRunner("Relu6",
                                     {
                                         *x,
                                     },
                                     {*out}, {});

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class Relu6GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    dx->mutable_data<T>(ctx.GetPlace());
    const auto& runner = NpuOpRunner("Relu6Grad", {*dout, *out}, {*dx}, {});

    runner.Run(stream);
  }
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
template <typename DeviceContext, typename T>
class SqrtNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
204
    const auto& runner = NpuOpRunner("Sqrt", {*x}, {*out}, {});
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SqrtGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
226 227
    const auto& runner_dx = NpuOpRunner("SqrtGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  }
};

template <typename DeviceContext, typename T>
class LogNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor one(x->type());
    one.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
249 250
    const auto& runner_one = NpuOpRunner("OnesLike", {*x}, {one}, {});
    runner_one.Run(stream);
251 252 253

    Tensor sub(x->type());
    sub.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
254 255
    const auto& runner_sub = NpuOpRunner("Sub", {*x, one}, {sub}, {});
    runner_sub.Run(stream);
256

L
Leo Chen 已提交
257 258
    const auto& runner_out = NpuOpRunner("Log1p", {sub}, {*out}, {});
    runner_out.Run(stream);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  }
};

template <typename DeviceContext, typename T>
class LogGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
278
    const auto& runner = NpuOpRunner("DivNoNan", {*dout, *x}, {*dx}, {});
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
299
    const auto& runner = NpuOpRunner("Tanh", {*x}, {*out}, {});
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
321 322
    const auto& runner_dx = NpuOpRunner("TanhGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  }
};

template <typename DeviceContext, typename T>
class SquareNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
342
    const auto& runner = NpuOpRunner("Square", {*x}, {*out}, {});
343 344 345 346
    runner.Run(stream);
  }
};

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
template <typename DeviceContext, typename T>
class SigmoidNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner = NpuOpRunner("Sigmoid", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SigmoidGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner_dx =
        NpuOpRunner("SigmoidGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
  }
};

F
furnace 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
template <typename DeviceContext, typename T>
class HardSigmoidNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    float slope = ctx.Attr<float>("slope");
    float offset = ctx.Attr<float>("offset");

    out->mutable_data<T>(ctx.GetPlace());

    framework::NPUAttributeMap attr_input = {{"alpha", slope},
                                             {"beta", offset}};

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner = NpuOpRunner("HardSigmoid", {*x}, {*out}, attr_input);
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class HardSigmoidGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    float slope = ctx.Attr<float>("slope");
    float offset = ctx.Attr<float>("offset");

    dx->mutable_data<T>(ctx.GetPlace());

    framework::NPUAttributeMap attr_input = {{"alpha", slope},
                                             {"beta", offset}};

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    const auto& runner_dx =
        NpuOpRunner("HardSigmoidGrad", {*dout, *out}, {*dx}, attr_input);
    runner_dx.Run(stream);
  }
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
template <typename DeviceContext, typename T>
class ReciprocalNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner = NpuOpRunner("Reciprocal", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReciprocalGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();
    dx->mutable_data<T>(place);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto& runner_dx =
        NpuOpRunner("ReciprocalGrad", {*out, *dout}, {*dx}, {});
    runner_dx.Run(stream);
  }
};

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    pow, ops::PowNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::PowNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    pow_grad, ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu, ops::ReluNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReluNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu_grad,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

501 502 503 504 505 506 507 508 509 510 511
REGISTER_OP_NPU_KERNEL(
    relu6, ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext,
                        paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu6_grad,
    ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext,
                            paddle::platform::float16>);

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
REGISTER_OP_NPU_KERNEL(
    sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    sqrt_grad,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    log, ops::LogNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::LogNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    log_grad, ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    tanh, ops::TanhNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::TanhNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    tanh_grad,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    square, ops::SquareNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SquareNPUKernel<paddle::platform::NPUDeviceContext,
                         paddle::platform::float16>,
    ops::SquareNPUKernel<paddle::platform::NPUDeviceContext, int>);
549 550 551 552 553 554 555 556 557 558 559

REGISTER_OP_NPU_KERNEL(
    sigmoid, ops::SigmoidNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SigmoidNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    sigmoid_grad,
    ops::SigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SigmoidGradNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);
F
furnace 已提交
560 561 562 563 564 565 566 567 568 569 570 571

REGISTER_OP_NPU_KERNEL(
    hard_sigmoid,
    ops::HardSigmoidNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::HardSigmoidNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    hard_sigmoid_grad,
    ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext,
                                  paddle::platform::float16>);
572 573 574 575 576 577 578 579 580 581 582 583 584 585

REGISTER_OP_NPU_KERNEL(
    reciprocal,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext,
                             paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    reciprocal_grad,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext,
                                 paddle::platform::float16>);